Changeset 11622
- Timestamp:
- 12/02/14 17:14:44 (10 years ago)
- Location:
- branches/Classification-Extensions/HeuristicLab.Problems.DataAnalysis/3.4
- Files:
-
- 1 added
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/Classification-Extensions/HeuristicLab.Problems.DataAnalysis/3.4/Implementation/Classification/ClassificationSolutionBase.cs
r11171 r11622 35 35 private const string TestNormalizedGiniCoefficientResultName = "Normalized Gini Coefficient (test)"; 36 36 37 private const string TrainingTruePositiveRateResultName = "True positive rate (training)"; 38 private const string TrainingTrueNegativeRateResultName = "True negative rate (training)"; 39 private const string TrainingPositivePredictiveValueResultName = "Positive predictive value (training)"; 40 private const string TrainingNegativePredictiveValueResultName = "Negative predictive value (training)"; 41 private const string TrainingFalsePositiveRateResultName = "False positive rate (training)"; 42 private const string TrainingFalseDiscoveryRateResultName = "False discovery rate (training)"; 43 private const string TestTruePositiveRateResultName = "True positive rate (test)"; 44 private const string TestTrueNegativeRateResultName = "True negative rate (test)"; 45 private const string TestPositivePredictiveValueResultName = "Positive predictive value (test)"; 46 private const string TestNegativePredictiveValueResultName = "Negative predictive value (test)"; 47 private const string TestFalsePositiveRateResultName = "False positive rate (test)"; 48 private const string TestFalseDiscoveryRateResultName = "False discovery rate (test)"; 49 private const string QualityMeasuresResultName = "Classification Quality Measures"; 50 37 51 public new IClassificationModel Model { 38 52 get { return (IClassificationModel)base.Model; } … … 62 76 protected set { ((DoubleValue)this[TestNormalizedGiniCoefficientResultName].Value).Value = value; } 63 77 } 78 79 #region Quality Measures 80 public ResultCollection QualityMeasures { 81 get { return ((ResultCollection)this[QualityMeasuresResultName].Value); } 82 protected set { (this[QualityMeasuresResultName].Value) = value; } 83 } 84 85 public double TrainingTruePositiveRate { 86 get { return ((DoubleValue)QualityMeasures[TrainingTruePositiveRateResultName].Value).Value; } 87 protected set { ((DoubleValue)QualityMeasures[TrainingTruePositiveRateResultName].Value).Value = value; } 88 } 89 public double TrainingTrueNegativeRate { 90 get { return ((DoubleValue)QualityMeasures[TrainingTrueNegativeRateResultName].Value).Value; } 91 protected set { ((DoubleValue)QualityMeasures[TrainingTrueNegativeRateResultName].Value).Value = value; } 92 } 93 public double TrainingPositivePredictiveValue { 94 get { return ((DoubleValue)QualityMeasures[TrainingPositivePredictiveValueResultName].Value).Value; } 95 protected set { ((DoubleValue)QualityMeasures[TrainingPositivePredictiveValueResultName].Value).Value = value; } 96 } 97 public double TrainingNegativePredictiveValue { 98 get { return ((DoubleValue)QualityMeasures[TrainingNegativePredictiveValueResultName].Value).Value; } 99 protected set { ((DoubleValue)QualityMeasures[TrainingNegativePredictiveValueResultName].Value).Value = value; } 100 } 101 public double TrainingFalsePositiveRate { 102 get { return ((DoubleValue)QualityMeasures[TrainingFalsePositiveRateResultName].Value).Value; } 103 protected set { ((DoubleValue)QualityMeasures[TrainingFalsePositiveRateResultName].Value).Value = value; } 104 } 105 public double TrainingFalseDiscoveryRate { 106 get { return ((DoubleValue)QualityMeasures[TrainingFalseDiscoveryRateResultName].Value).Value; } 107 protected set { ((DoubleValue)QualityMeasures[TrainingFalseDiscoveryRateResultName].Value).Value = value; } 108 } 109 110 public double TestTruePositiveRate { 111 get { return ((DoubleValue)QualityMeasures[TestTruePositiveRateResultName].Value).Value; } 112 protected set { ((DoubleValue)QualityMeasures[TestTruePositiveRateResultName].Value).Value = value; } 113 } 114 public double TestTrueNegativeRate { 115 get { return ((DoubleValue)QualityMeasures[TestTrueNegativeRateResultName].Value).Value; } 116 protected set { ((DoubleValue)QualityMeasures[TestTrueNegativeRateResultName].Value).Value = value; } 117 } 118 public double TestPositivePredictiveValue { 119 get { return ((DoubleValue)QualityMeasures[TestPositivePredictiveValueResultName].Value).Value; } 120 protected set { ((DoubleValue)QualityMeasures[TestPositivePredictiveValueResultName].Value).Value = value; } 121 } 122 public double TestNegativePredictiveValue { 123 get { return ((DoubleValue)QualityMeasures[TestNegativePredictiveValueResultName].Value).Value; } 124 protected set { ((DoubleValue)QualityMeasures[TestNegativePredictiveValueResultName].Value).Value = value; } 125 } 126 public double TestFalsePositiveRate { 127 get { return ((DoubleValue)QualityMeasures[TestFalsePositiveRateResultName].Value).Value; } 128 protected set { ((DoubleValue)QualityMeasures[TestFalsePositiveRateResultName].Value).Value = value; } 129 } 130 public double TestFalseDiscoveryRate { 131 get { return ((DoubleValue)QualityMeasures[TestFalseDiscoveryRateResultName].Value).Value; } 132 protected set { ((DoubleValue)QualityMeasures[TestFalseDiscoveryRateResultName].Value).Value = value; } 133 } 134 #endregion 64 135 #endregion 65 136 … … 75 146 Add(new Result(TrainingNormalizedGiniCoefficientResultName, "Normalized Gini coefficient of the model on the training partition.", new DoubleValue())); 76 147 Add(new Result(TestNormalizedGiniCoefficientResultName, "Normalized Gini coefficient of the model on the test partition.", new DoubleValue())); 148 AddQualityMeasuresResultCollection(); 77 149 } 78 150 … … 83 155 if (!this.ContainsKey(TestNormalizedGiniCoefficientResultName)) 84 156 Add(new Result(TestNormalizedGiniCoefficientResultName, "Normalized Gini coefficient of the model on the test partition.", new DoubleValue())); 157 if (!this.ContainsKey(QualityMeasuresResultName)) 158 AddQualityMeasuresResultCollection(); 159 } 160 161 protected void AddQualityMeasuresResultCollection() { 162 ResultCollection qualityMeasuresResult = new ResultCollection(); 163 qualityMeasuresResult.Add(new Result(TrainingTruePositiveRateResultName, "Sensitivity/True positive rate of the model on the training partition\n(TP/(TP+FN)).", new PercentValue())); 164 qualityMeasuresResult.Add(new Result(TrainingTrueNegativeRateResultName, "Specificity/True negative rate of the model on the training partition\n(TN/(FP+TN)).", new PercentValue())); 165 qualityMeasuresResult.Add(new Result(TrainingPositivePredictiveValueResultName, "Precision/Positive predictive value of the model on the training partition\n(TP/(TP+FP)).", new PercentValue())); 166 qualityMeasuresResult.Add(new Result(TrainingNegativePredictiveValueResultName, "Negative predictive value of the model on the training partition\n(TN/(TN+FN)).", new PercentValue())); 167 qualityMeasuresResult.Add(new Result(TrainingFalsePositiveRateResultName, "The false positive rate is the complement of the true negative rate of the model on the training partition.", new PercentValue())); 168 qualityMeasuresResult.Add(new Result(TrainingFalseDiscoveryRateResultName, "The false discovery rate is the complement of the positive predictive value of the model on the training partition.", new PercentValue())); 169 qualityMeasuresResult.Add(new Result(TestTruePositiveRateResultName, "Sensitivity/True positive rate of the model on the test partition\n(TP/(TP+FN)).", new PercentValue())); 170 qualityMeasuresResult.Add(new Result(TestTrueNegativeRateResultName, "Specificity/True negative rate of the model on the test partition\n(TN/(FP+TN)).", new PercentValue())); 171 qualityMeasuresResult.Add(new Result(TestPositivePredictiveValueResultName, "Precision/Positive predictive value of the model on the test partition\n(TP/(TP+FP)).", new PercentValue())); 172 qualityMeasuresResult.Add(new Result(TestNegativePredictiveValueResultName, "Negative predictive value of the model on the test partition\n(TN/(TN+FN)).", new PercentValue())); 173 qualityMeasuresResult.Add(new Result(TestFalsePositiveRateResultName, "The false positive rate is the complement of the true negative rate of the model on the test partition.", new PercentValue())); 174 qualityMeasuresResult.Add(new Result(TestFalseDiscoveryRateResultName, "The false discovery rate is the complement of the positive predictive value of the model on the test partition.", new PercentValue())); 175 Add(new Result(QualityMeasuresResultName, "Classification quality measures.\nIn Multiclass Classification all misclassifications of the negative class will be treated as true negatives.", qualityMeasuresResult)); 85 176 } 86 177 … … 88 179 double[] estimatedTrainingClassValues = EstimatedTrainingClassValues.ToArray(); // cache values 89 180 double[] originalTrainingClassValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TrainingIndices).ToArray(); 181 90 182 double[] estimatedTestClassValues = EstimatedTestClassValues.ToArray(); // cache values 91 183 double[] originalTestClassValues = ProblemData.Dataset.GetDoubleValues(ProblemData.TargetVariable, ProblemData.TestIndices).ToArray(); 184 185 var positiveClassName = ProblemData.PositiveClassName; 186 double positiveClassValue = ProblemData.GetClassValue(positiveClassName); 187 QualityCalculator trainingQualityCalculator = new QualityCalculator(positiveClassValue); 188 QualityCalculator testQualityCalculator = new QualityCalculator(positiveClassValue); 92 189 93 190 OnlineCalculatorError errorState; … … 107 204 TrainingNormalizedGiniCoefficient = trainingNormalizedGini; 108 205 TestNormalizedGiniCoefficient = testNormalizedGini; 206 207 //quality measures training partition 208 trainingQualityCalculator.Calculate(originalTrainingClassValues, estimatedTrainingClassValues, out errorState); 209 if (errorState != OnlineCalculatorError.None) { 210 TrainingTruePositiveRate = double.NaN; 211 TrainingTrueNegativeRate = double.NaN; 212 TrainingPositivePredictiveValue = double.NaN; 213 TrainingNegativePredictiveValue = double.NaN; 214 TrainingFalsePositiveRate = double.NaN; 215 TrainingFalseDiscoveryRate = double.NaN; 216 } else { 217 TrainingTruePositiveRate = trainingQualityCalculator.TruePositiveRate; 218 TrainingTrueNegativeRate = trainingQualityCalculator.TrueNegativeRate; 219 TrainingPositivePredictiveValue = trainingQualityCalculator.PositivePredictiveValue; 220 TrainingNegativePredictiveValue = trainingQualityCalculator.NegativePredictiveValue; 221 TrainingFalsePositiveRate = trainingQualityCalculator.FalsePositiveRate; 222 TrainingFalseDiscoveryRate = trainingQualityCalculator.FalseDiscoveryRate; 223 } 224 //quality measures test partition 225 testQualityCalculator.Calculate(originalTestClassValues, estimatedTestClassValues, out errorState); 226 if (errorState != OnlineCalculatorError.None) { 227 TestTruePositiveRate = double.NaN; 228 TestTrueNegativeRate = double.NaN; 229 TestPositivePredictiveValue = double.NaN; 230 TestNegativePredictiveValue = double.NaN; 231 TestFalsePositiveRate = double.NaN; 232 TestFalseDiscoveryRate = double.NaN; 233 } else { 234 TestTruePositiveRate = testQualityCalculator.TruePositiveRate; 235 TestTrueNegativeRate = testQualityCalculator.TrueNegativeRate; 236 TestPositivePredictiveValue = testQualityCalculator.PositivePredictiveValue; 237 TestNegativePredictiveValue = testQualityCalculator.NegativePredictiveValue; 238 TestFalsePositiveRate = testQualityCalculator.FalsePositiveRate; 239 TestFalseDiscoveryRate = testQualityCalculator.FalseDiscoveryRate; 240 } 109 241 } 110 242
Note: See TracChangeset
for help on using the changeset viewer.