- Timestamp:
- 11/27/14 11:23:37 (10 years ago)
- Location:
- branches/Breadcrumbs
- Files:
-
- 11 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/Breadcrumbs ¶
- Property svn:ignore
-
TabularUnified
old new 8 8 FxCopResults.txt 9 9 Google.ProtocolBuffers-0.9.1.dll 10 Google.ProtocolBuffers-2.4.1.473.dll 10 11 HeuristicLab 3.3.5.1.ReSharper.user 11 12 HeuristicLab 3.3.6.0.ReSharper.user 12 13 HeuristicLab.4.5.resharper.user 13 14 HeuristicLab.ExtLibs.6.0.ReSharper.user 15 HeuristicLab.Scripting.Development 14 16 HeuristicLab.resharper.user 15 17 ProtoGen.exe … … 17 19 _ReSharper.HeuristicLab 18 20 _ReSharper.HeuristicLab 3.3 21 _ReSharper.HeuristicLab 3.3 Tests 19 22 _ReSharper.HeuristicLab.ExtLibs 20 23 bin 21 24 protoc.exe 22 _ReSharper.HeuristicLab 3.3 Tests23 Google.ProtocolBuffers-2.4.1.473.dll
-
- Property svn:mergeinfo changed
- Property svn:ignore
-
TabularUnified branches/Breadcrumbs/HeuristicLab.Algorithms.OffspringSelectionGeneticAlgorithm/3.3/IslandOffspringSelectionGeneticAlgorithm.cs ¶
r9592 r11594 1 1 #region License Information 2 2 /* HeuristicLab 3 * Copyright (C) 2002-201 3Heuristic and Evolutionary Algorithms Laboratory (HEAL)3 * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL) 4 4 * 5 5 * This file is part of HeuristicLab. … … 133 133 get { return (ValueParameter<IntValue>)Parameters["MaximumEvaluatedSolutions"]; } 134 134 } 135 private IFixedValueParameter<BoolValue> FillPopulationWithParentsParameter { 136 get { return (IFixedValueParameter<BoolValue>)Parameters["FillPopulationWithParents"]; } 137 } 135 138 #endregion 136 139 … … 200 203 set { ReevaluateElitesParameter.Value.Value = value; } 201 204 } 202 p rivateDoubleValue SuccessRatio {205 public DoubleValue SuccessRatio { 203 206 get { return SuccessRatioParameter.Value; } 204 207 set { SuccessRatioParameter.Value = value; } 205 208 } 206 p rivateDoubleValue ComparisonFactorLowerBound {209 public DoubleValue ComparisonFactorLowerBound { 207 210 get { return ComparisonFactorLowerBoundParameter.Value; } 208 211 set { ComparisonFactorLowerBoundParameter.Value = value; } 209 212 } 210 p rivateDoubleValue ComparisonFactorUpperBound {213 public DoubleValue ComparisonFactorUpperBound { 211 214 get { return ComparisonFactorUpperBoundParameter.Value; } 212 215 set { ComparisonFactorUpperBoundParameter.Value = value; } … … 216 219 set { ComparisonFactorModifierParameter.Value = value; } 217 220 } 218 p rivateDoubleValue MaximumSelectionPressure {221 public DoubleValue MaximumSelectionPressure { 219 222 get { return MaximumSelectionPressureParameter.Value; } 220 223 set { MaximumSelectionPressureParameter.Value = value; } 221 224 } 222 p rivateBoolValue OffspringSelectionBeforeMutation {225 public BoolValue OffspringSelectionBeforeMutation { 223 226 get { return OffspringSelectionBeforeMutationParameter.Value; } 224 227 set { OffspringSelectionBeforeMutationParameter.Value = value; } … … 235 238 get { return MaximumEvaluatedSolutionsParameter.Value; } 236 239 set { MaximumEvaluatedSolutionsParameter.Value = value; } 240 } 241 public bool FillPopulationWithParents { 242 get { return FillPopulationWithParentsParameter.Value.Value; } 243 set { FillPopulationWithParentsParameter.Value.Value = value; } 237 244 } 238 245 private RandomCreator RandomCreator { … … 271 278 Parameters.Add(new FixedValueParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)", (BoolValue)new BoolValue(false).AsReadOnly()) { Hidden = true }); 272 279 } 280 if (!Parameters.ContainsKey("FillPopulationWithParents")) 281 Parameters.Add(new FixedValueParameter<BoolValue>("FillPopulationWithParents", "True if the population should be filled with parent individual or false if worse children should be used when the maximum selection pressure is exceeded.", new BoolValue(false)) { Hidden = true }); 273 282 #endregion 274 283 … … 315 324 Parameters.Add(new ValueParameter<MultiAnalyzer>("IslandAnalyzer", "The operator used to analyze each island.", new MultiAnalyzer())); 316 325 Parameters.Add(new ValueParameter<IntValue>("MaximumEvaluatedSolutions", "The maximum number of evaluated solutions (approximately).", new IntValue(int.MaxValue))); 326 Parameters.Add(new FixedValueParameter<BoolValue>("FillPopulationWithParents", "True if the population should be filled with parent individual or false if worse children should be used when the maximum selection pressure is exceeded.", new BoolValue(true)) { Hidden = true }); 317 327 318 328 RandomCreator randomCreator = new RandomCreator(); … … 379 389 mainLoop.OffspringSelectionBeforeMutationParameter.ActualName = OffspringSelectionBeforeMutationParameter.Name; 380 390 mainLoop.EvaluatedSolutionsParameter.ActualName = "EvaluatedSolutions"; 391 mainLoop.FillPopulationWithParentsParameter.ActualName = FillPopulationWithParentsParameter.Name; 381 392 mainLoop.Successor = null; 382 393 -
TabularUnified branches/Breadcrumbs/HeuristicLab.Algorithms.OffspringSelectionGeneticAlgorithm/3.3/IslandOffspringSelectionGeneticAlgorithmMainLoop.cs ¶
r9592 r11594 1 1 #region License Information 2 2 /* HeuristicLab 3 * Copyright (C) 2002-201 3Heuristic and Evolutionary Algorithms Laboratory (HEAL)3 * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL) 4 4 * 5 5 * This file is part of HeuristicLab. … … 129 129 public LookupParameter<IntValue> EvaluatedSolutionsParameter { 130 130 get { return (LookupParameter<IntValue>)Parameters["EvaluatedSolutions"]; } 131 } 132 public IValueLookupParameter<BoolValue> FillPopulationWithParentsParameter { 133 get { return (IValueLookupParameter<BoolValue>)Parameters["FillPopulationWithParents"]; } 131 134 } 132 135 #endregion … … 174 177 Parameters.Add(new ValueLookupParameter<IOperator>("IslandAnalyzer", "The operator used to analyze each island.")); 175 178 Parameters.Add(new LookupParameter<IntValue>("EvaluatedSolutions", "The number of times solutions have been evaluated.")); 179 Parameters.Add(new ValueLookupParameter<BoolValue>("FillPopulationWithParents", "True if the population should be filled with parent individual or false if worse children should be used when the maximum selection pressure is exceeded.")); 176 180 #endregion 177 181 … … 265 269 mainOperator.SelectorParameter.ActualName = SelectorParameter.Name; 266 270 mainOperator.SuccessRatioParameter.ActualName = SuccessRatioParameter.Name; 271 mainOperator.FillPopulationWithParentsParameter.ActualName = FillPopulationWithParentsParameter.Name; 267 272 268 273 islandAnalyzer2.Name = "Island Analyzer (placeholder)"; … … 426 431 Parameters.Add(new ValueLookupParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)")); 427 432 } 433 if (!Parameters.ContainsKey("FillPopulationWithParents")) 434 Parameters.Add(new ValueLookupParameter<BoolValue>("FillPopulationWithParents", "True if the population should be filled with parent individual or false if worse children should be used when the maximum selection pressure is exceeded.")); 428 435 #endregion 429 436 } -
TabularUnified branches/Breadcrumbs/HeuristicLab.Algorithms.OffspringSelectionGeneticAlgorithm/3.3/OffspringSelectionGeneticAlgorithm.cs ¶
r9592 r11594 1 1 #region License Information 2 2 /* HeuristicLab 3 * Copyright (C) 2002-201 3Heuristic and Evolutionary Algorithms Laboratory (HEAL)3 * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL) 4 4 * 5 5 * This file is part of HeuristicLab. … … 112 112 get { return (ValueParameter<IntValue>)Parameters["MaximumEvaluatedSolutions"]; } 113 113 } 114 private IFixedValueParameter<BoolValue> FillPopulationWithParentsParameter { 115 get { return (IFixedValueParameter<BoolValue>)Parameters["FillPopulationWithParents"]; } 116 } 114 117 #endregion 115 118 … … 190 193 get { return MaximumEvaluatedSolutionsParameter.Value; } 191 194 set { MaximumEvaluatedSolutionsParameter.Value = value; } 195 } 196 public bool FillPopulationWithParents { 197 get { return FillPopulationWithParentsParameter.Value.Value; } 198 set { FillPopulationWithParentsParameter.Value.Value = value; } 192 199 } 193 200 private RandomCreator RandomCreator { … … 219 226 Parameters.Add(new FixedValueParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)", (BoolValue)new BoolValue(false).AsReadOnly()) { Hidden = true }); 220 227 } 228 if (!Parameters.ContainsKey("FillPopulationWithParents")) 229 Parameters.Add(new FixedValueParameter<BoolValue>("FillPopulationWithParents", "True if the population should be filled with parent individual or false if worse children should be used when the maximum selection pressure is exceeded.", new BoolValue(false)) { Hidden = true }); 221 230 #endregion 222 231 … … 254 263 Parameters.Add(new ValueParameter<MultiAnalyzer>("Analyzer", "The operator used to analyze each generation.", new MultiAnalyzer())); 255 264 Parameters.Add(new ValueParameter<IntValue>("MaximumEvaluatedSolutions", "The maximum number of evaluated solutions (approximately).", new IntValue(int.MaxValue))); 265 Parameters.Add(new FixedValueParameter<BoolValue>("FillPopulationWithParents", "True if the population should be filled with parent individual or false if worse children should be used when the maximum selection pressure is exceeded.", new BoolValue(false)) { Hidden = true }); 256 266 257 267 RandomCreator randomCreator = new RandomCreator(); … … 297 307 mainLoop.SelectorParameter.ActualName = SelectorParameter.Name; 298 308 mainLoop.SuccessRatioParameter.ActualName = SuccessRatioParameter.Name; 309 mainLoop.FillPopulationWithParentsParameter.ActualName = FillPopulationWithParentsParameter.Name; 299 310 300 311 foreach (ISelector selector in ApplicationManager.Manager.GetInstances<ISelector>().Where(x => !(x is IMultiObjectiveSelector)).OrderBy(x => x.Name)) -
TabularUnified branches/Breadcrumbs/HeuristicLab.Algorithms.OffspringSelectionGeneticAlgorithm/3.3/OffspringSelectionGeneticAlgorithmMainLoop.cs ¶
r9592 r11594 1 1 #region License Information 2 2 /* HeuristicLab 3 * Copyright (C) 2002-201 3Heuristic and Evolutionary Algorithms Laboratory (HEAL)3 * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL) 4 4 * 5 5 * This file is part of HeuristicLab. … … 96 96 get { return (LookupParameter<IntValue>)Parameters["EvaluatedSolutions"]; } 97 97 } 98 public IValueLookupParameter<BoolValue> FillPopulationWithParentsParameter { 99 get { return (IValueLookupParameter<BoolValue>)Parameters["FillPopulationWithParents"]; } 100 } 98 101 #endregion 99 102 … … 118 121 Parameters.Add(new ValueLookupParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)")); 119 122 } 123 if (!Parameters.ContainsKey("FillPopulationWithParents")) 124 Parameters.Add(new ValueLookupParameter<BoolValue>("FillPopulationWithParents", "True if the population should be filled with parent individual or false if worse children should be used when the maximum selection pressure is exceeded.")); 120 125 #endregion 121 126 } … … 144 149 Parameters.Add(new ValueLookupParameter<BoolValue>("OffspringSelectionBeforeMutation", "True if the offspring selection step should be applied before mutation, false if it should be applied after mutation.")); 145 150 Parameters.Add(new LookupParameter<IntValue>("EvaluatedSolutions", "The number of times solutions have been evaluated.")); 151 Parameters.Add(new ValueLookupParameter<BoolValue>("FillPopulationWithParents", "True if the population should be filled with parent individual or false if worse children should be used when the maximum selection pressure is exceeded.")); 146 152 #endregion 147 153 … … 197 203 mainOperator.SelectorParameter.ActualName = SelectorParameter.Name; 198 204 mainOperator.SuccessRatioParameter.ActualName = SuccessRatioParameter.Name; 205 mainOperator.FillPopulationWithParentsParameter.ActualName = FillPopulationWithParentsParameter.Name; 199 206 200 207 generationsCounter.Increment = new IntValue(1); -
TabularUnified branches/Breadcrumbs/HeuristicLab.Algorithms.OffspringSelectionGeneticAlgorithm/3.3/OffspringSelectionGeneticAlgorithmMainOperator.cs ¶
r9592 r11594 1 1 #region License Information 2 2 /* HeuristicLab 3 * Copyright (C) 2002-201 3Heuristic and Evolutionary Algorithms Laboratory (HEAL)3 * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL) 4 4 * 5 5 * This file is part of HeuristicLab. … … 88 88 get { return (ValueLookupParameter<BoolValue>)Parameters["OffspringSelectionBeforeMutation"]; } 89 89 } 90 public IValueLookupParameter<BoolValue> FillPopulationWithParentsParameter { 91 get { return (IValueLookupParameter<BoolValue>)Parameters["FillPopulationWithParents"]; } 92 } 90 93 #endregion 91 94 … … 110 113 Parameters.Add(new ValueLookupParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)")); 111 114 } 115 if (!Parameters.ContainsKey("FillPopulationWithParents")) 116 Parameters.Add(new ValueLookupParameter<BoolValue>("FillPopulationWithParents", "True if the population should be filled with parent individual or false if worse children should be used when the maximum selection pressure is exceeded.")); 112 117 #endregion 113 118 } … … 132 137 Parameters.Add(new ValueLookupParameter<DoubleValue>("MaximumSelectionPressure", "The maximum selection pressure that terminates the algorithm.")); 133 138 Parameters.Add(new ValueLookupParameter<BoolValue>("OffspringSelectionBeforeMutation", "True if the offspring selection step should be applied before mutation, false if it should be applied after mutation.")); 139 Parameters.Add(new ValueLookupParameter<BoolValue>("FillPopulationWithParents", "True if the population should be filled with parent individual or false if worse children should be used when the maximum selection pressure is exceeded.")); 134 140 #endregion 135 141 … … 261 267 offspringSelector.OffspringPopulationWinnersParameter.ActualName = "OffspringPopulationWinners"; 262 268 offspringSelector.SuccessfulOffspringParameter.ActualName = "SuccessfulOffspring"; 269 offspringSelector.FillPopulationWithParentsParameter.ActualName = FillPopulationWithParentsParameter.Name; 263 270 264 271 bestSelector.CopySelected = new BoolValue(false); -
TabularUnified branches/Breadcrumbs/HeuristicLab.Algorithms.OffspringSelectionGeneticAlgorithm/3.3/Plugin.cs.frame ¶
r10037 r11594 1 1 #region License Information 2 2 /* HeuristicLab 3 * Copyright (C) 2002-201 3Heuristic and Evolutionary Algorithms Laboratory (HEAL)3 * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL) 4 4 * 5 5 * This file is part of HeuristicLab. … … 26 26 /// Plugin class for HeuristicLab.Algorithms.OffspringSelectionGeneticAlgorithm plugin. 27 27 /// </summary> 28 [Plugin("HeuristicLab.Algorithms.OffspringSelectionGeneticAlgorithm", "3.3. 9.$WCREV$")]28 [Plugin("HeuristicLab.Algorithms.OffspringSelectionGeneticAlgorithm", "3.3.10.$WCREV$")] 29 29 [PluginFile("HeuristicLab.Algorithms.OffspringSelectionGeneticAlgorithm-3.3.dll", PluginFileType.Assembly)] 30 30 [PluginDependency("HeuristicLab.Analysis", "3.3")] -
TabularUnified branches/Breadcrumbs/HeuristicLab.Algorithms.OffspringSelectionGeneticAlgorithm/3.3/Properties/AssemblyInfo.cs.frame ¶
r10037 r11594 1 1 #region License Information 2 2 /* HeuristicLab 3 * Copyright (C) 2002-201 3Heuristic and Evolutionary Algorithms Laboratory (HEAL)3 * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL) 4 4 * 5 5 * This file is part of HeuristicLab. … … 31 31 [assembly: AssemblyCompany("")] 32 32 [assembly: AssemblyProduct("HeuristicLab")] 33 [assembly: AssemblyCopyright("(c) 2002-201 3HEAL")]33 [assembly: AssemblyCopyright("(c) 2002-2014 HEAL")] 34 34 [assembly: AssemblyTrademark("")] 35 35 [assembly: AssemblyCulture("")] … … 53 53 // by using the '*' as shown below: 54 54 [assembly: AssemblyVersion("3.3.0.0")] 55 [assembly: AssemblyFileVersion("3.3. 9.$WCREV$")]55 [assembly: AssemblyFileVersion("3.3.10.$WCREV$")] -
TabularUnified branches/Breadcrumbs/HeuristicLab.Algorithms.OffspringSelectionGeneticAlgorithm/3.3/SASEGASA.cs ¶
r9592 r11594 1 1 #region License Information 2 2 /* HeuristicLab 3 * Copyright (C) 2002-201 3Heuristic and Evolutionary Algorithms Laboratory (HEAL)3 * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL) 4 4 * 5 5 * This file is part of HeuristicLab. … … 121 121 get { return (ValueParameter<IntValue>)Parameters["MaximumEvaluatedSolutions"]; } 122 122 } 123 private IFixedValueParameter<BoolValue> FillPopulationWithParentsParameter { 124 get { return (IFixedValueParameter<BoolValue>)Parameters["FillPopulationWithParents"]; } 125 } 123 126 #endregion 124 127 … … 211 214 get { return MaximumEvaluatedSolutionsParameter.Value; } 212 215 set { MaximumEvaluatedSolutionsParameter.Value = value; } 216 } 217 public bool FillPopulationWithParents { 218 get { return FillPopulationWithParentsParameter.Value.Value; } 219 set { FillPopulationWithParentsParameter.Value.Value = value; } 213 220 } 214 221 private RandomCreator RandomCreator { … … 247 254 Parameters.Add(new FixedValueParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)", (BoolValue)new BoolValue(false).AsReadOnly()) { Hidden = true }); 248 255 } 256 if (!Parameters.ContainsKey("FillPopulationWithParents")) 257 Parameters.Add(new FixedValueParameter<BoolValue>("FillPopulationWithParents", "True if the population should be filled with parent individual or false if worse children should be used when the maximum selection pressure is exceeded.", new BoolValue(false)) { Hidden = true }); 249 258 #endregion 250 259 … … 287 296 Parameters.Add(new ValueParameter<MultiAnalyzer>("VillageAnalyzer", "The operator used to analyze each village.", new MultiAnalyzer())); 288 297 Parameters.Add(new ValueParameter<IntValue>("MaximumEvaluatedSolutions", "The maximum number of evaluated solutions (approximately).", new IntValue(int.MaxValue))); 298 Parameters.Add(new FixedValueParameter<BoolValue>("FillPopulationWithParents", "True if the population should be filled with parent individual or false if worse children should be used when the maximum selection pressure is exceeded.", new BoolValue(true)) { Hidden = true }); 289 299 290 300 RandomCreator randomCreator = new RandomCreator(); … … 346 356 mainLoop.OffspringSelectionBeforeMutationParameter.ActualName = OffspringSelectionBeforeMutationParameter.Name; 347 357 mainLoop.EvaluatedSolutionsParameter.ActualName = "EvaluatedSolutions"; 358 mainLoop.FillPopulationWithParentsParameter.ActualName = FillPopulationWithParentsParameter.Name; 348 359 mainLoop.Successor = null; 349 360 -
TabularUnified branches/Breadcrumbs/HeuristicLab.Algorithms.OffspringSelectionGeneticAlgorithm/3.3/SASEGASAMainLoop.cs ¶
r9592 r11594 1 1 #region License Information 2 2 /* HeuristicLab 3 * Copyright (C) 2002-201 3Heuristic and Evolutionary Algorithms Laboratory (HEAL)3 * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL) 4 4 * 5 5 * This file is part of HeuristicLab. … … 111 111 public LookupParameter<IntValue> EvaluatedSolutionsParameter { 112 112 get { return (LookupParameter<IntValue>)Parameters["EvaluatedSolutions"]; } 113 } 114 public IValueLookupParameter<BoolValue> FillPopulationWithParentsParameter { 115 get { return (IValueLookupParameter<BoolValue>)Parameters["FillPopulationWithParents"]; } 113 116 } 114 117 #endregion … … 150 153 Parameters.Add(new ValueLookupParameter<BoolValue>("OffspringSelectionBeforeMutation", "True if the offspring selection step should be applied before mutation, false if it should be applied after mutation.")); 151 154 Parameters.Add(new LookupParameter<IntValue>("EvaluatedSolutions", "The number of times solutions have been evaluated.")); 155 Parameters.Add(new ValueLookupParameter<BoolValue>("FillPopulationWithParents", "True if the population should be filled with parent individual or false if worse children should be used when the maximum selection pressure is exceeded.")); 152 156 #endregion 153 157 … … 253 257 mainOperator.SelectorParameter.ActualName = SelectorParameter.Name; 254 258 mainOperator.SuccessRatioParameter.ActualName = SuccessRatioParameter.Name; 259 mainOperator.FillPopulationWithParentsParameter.ActualName = FillPopulationWithParentsParameter.Name; 255 260 256 261 villageAnalyzer2.Name = "Village Analyzer (placeholder)"; … … 436 441 Parameters.Add(new ValueLookupParameter<BoolValue>("ReevaluateElites", "Flag to determine if elite individuals should be reevaluated (i.e., if stochastic fitness functions are used.)")); 437 442 } 443 if (!Parameters.ContainsKey("FillPopulationWithParents")) 444 Parameters.Add(new ValueLookupParameter<BoolValue>("FillPopulationWithParents", "True if the population should be filled with parent individual or false if worse children should be used when the maximum selection pressure is exceeded.")); 438 445 #endregion 439 446 } -
TabularUnified branches/Breadcrumbs/HeuristicLab.Algorithms.OffspringSelectionGeneticAlgorithm/3.3/SuccessfulOffspringAnalysis/SuccessfulOffspringAnalyzer.cs ¶
r9456 r11594 1 1 #region License Information 2 2 /* HeuristicLab 3 * Copyright (C) 2002-201 3Heuristic and Evolutionary Algorithms Laboratory (HEAL)3 * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL) 4 4 * 5 5 * This file is part of HeuristicLab. … … 81 81 Parameters.Add(new LookupParameter<ResultCollection>("SuccessfulOffspringAnalysis", "The successful offspring analysis which is created.")); 82 82 Parameters.Add(new ValueParameter<IntValue>("Depth", "The depth of the individuals in the scope tree.", new IntValue(1))); 83 84 CollectedValuesParameter.Value.Add(new StringValue("SelectedCrossoverOperator")); 85 CollectedValuesParameter.Value.Add(new StringValue("SelectedManipulationOperator")); 83 86 } 84 87 … … 110 113 } 111 114 112 //create a data table containing the collected values 113 ResultCollection successfulOffspringAnalysis; 115 if (counts.Count > 0) { 116 //create a data table containing the collected values 117 ResultCollection successfulOffspringAnalysis; 114 118 115 if (SuccessfulOffspringAnalysisParameter.ActualValue == null) { 116 successfulOffspringAnalysis = new ResultCollection(); 117 SuccessfulOffspringAnalysisParameter.ActualValue = successfulOffspringAnalysis; 118 } else { 119 successfulOffspringAnalysis = SuccessfulOffspringAnalysisParameter.ActualValue; 120 } 121 122 string resultKey = "SuccessfulOffspringAnalyzer Results"; 123 if (!results.ContainsKey(resultKey)) { 124 results.Add(new Result(resultKey, successfulOffspringAnalysis)); 125 } else { 126 results[resultKey].Value = successfulOffspringAnalysis; 127 } 128 129 DataTable successProgressAnalysis; 130 if (!successfulOffspringAnalysis.ContainsKey(collected.Value)) { 131 successProgressAnalysis = new DataTable(); 132 successProgressAnalysis.Name = collected.Value; 133 successfulOffspringAnalysis.Add(new Result(collected.Value, successProgressAnalysis)); 134 } else { 135 successProgressAnalysis = successfulOffspringAnalysis[collected.Value].Value as DataTable; 136 } 137 138 int successfulCount = 0; 139 foreach (string key in counts.Keys) { 140 successfulCount += counts[key]; 141 } 142 143 foreach (String value in counts.Keys) { 144 DataRow row; 145 if (!successProgressAnalysis.Rows.ContainsKey(value)) { 146 row = new DataRow(value); 147 int iterations = GenerationsParameter.ActualValue.Value; 148 149 //fill up all values seen the first time 150 for (int i = 1; i < iterations; i++) 151 row.Values.Add(0); 152 153 successProgressAnalysis.Rows.Add(row); 119 if (SuccessfulOffspringAnalysisParameter.ActualValue == null) { 120 successfulOffspringAnalysis = new ResultCollection(); 121 SuccessfulOffspringAnalysisParameter.ActualValue = successfulOffspringAnalysis; 154 122 } else { 155 row = successProgressAnalysis.Rows[value];123 successfulOffspringAnalysis = SuccessfulOffspringAnalysisParameter.ActualValue; 156 124 } 157 125 158 row.Values.Add(counts[value] / (double)successfulCount); 159 } 126 string resultKey = "SuccessfulOffspringAnalyzer Results"; 127 if (!results.ContainsKey(resultKey)) { 128 results.Add(new Result(resultKey, successfulOffspringAnalysis)); 129 } else { 130 results[resultKey].Value = successfulOffspringAnalysis; 131 } 160 132 161 //fill up all values that are not present in the current generation 162 foreach (DataRow row in successProgressAnalysis.Rows) { 163 if (!counts.ContainsKey(row.Name)) 164 row.Values.Add(0); 133 DataTable successProgressAnalysis; 134 if (!successfulOffspringAnalysis.ContainsKey(collected.Value)) { 135 successProgressAnalysis = new DataTable(); 136 successProgressAnalysis.Name = collected.Value; 137 successfulOffspringAnalysis.Add(new Result(collected.Value, successProgressAnalysis)); 138 } else { 139 successProgressAnalysis = successfulOffspringAnalysis[collected.Value].Value as DataTable; 140 } 141 142 int successfulCount = 0; 143 foreach (string key in counts.Keys) { 144 successfulCount += counts[key]; 145 } 146 147 foreach (String value in counts.Keys) { 148 DataRow row; 149 if (!successProgressAnalysis.Rows.ContainsKey(value)) { 150 row = new DataRow(value); 151 int iterations = GenerationsParameter.ActualValue.Value; 152 153 //fill up all values seen the first time 154 for (int i = 1; i < iterations; i++) 155 row.Values.Add(0); 156 157 successProgressAnalysis.Rows.Add(row); 158 } else { 159 row = successProgressAnalysis.Rows[value]; 160 } 161 162 row.Values.Add(counts[value] / (double)successfulCount); 163 } 164 165 //fill up all values that are not present in the current generation 166 foreach (DataRow row in successProgressAnalysis.Rows) { 167 if (!counts.ContainsKey(row.Name)) 168 row.Values.Add(0); 169 } 165 170 } 166 171 }
Note: See TracChangeset
for help on using the changeset viewer.