- Timestamp:
- 03/28/08 14:28:10 (17 years ago)
- Location:
- trunk/sources/HeuristicLab.RealVector
- Files:
-
- 2 added
- 1 edited
- 4 moved
Legend:
- Unmodified
- Added
- Removed
-
trunk/sources/HeuristicLab.RealVector/DiscreteMultiCrossover.cs
r110 r111 27 27 28 28 namespace HeuristicLab.RealVector { 29 public class Discrete Recombination : OperatorBase {29 public class DiscreteMultiCrossover : RealVectorMultiCrossoverBase { 30 30 public override string Description { 31 31 get { 32 return @" Discrete/dominant recombinationcreates a new offspring by combining the alleles in the parents such that each allele is randomly selected from one parent";32 return @"This creates a new offspring by combining the alleles in the parents such that each allele is randomly selected from one parent"; 33 33 } 34 34 } 35 35 36 public DiscreteRecombination() 37 : base() { 38 AddVariableInfo(new VariableInfo("Random", "Pseudo random number generator", typeof(IRandom), VariableKind.In)); 39 AddVariableInfo(new VariableInfo("Rho", "Amount of parents to recombine", typeof(IntData), VariableKind.In)); 40 AddVariableInfo(new VariableInfo("RealVector", "Parent and child real vector", typeof(DoubleArrayData), VariableKind.In | VariableKind.New)); 36 public static double[] Apply(IRandom random, IList<double[]> parents) { 37 int length = parents[0].Length; 38 double[] result = new double[length]; 39 try { 40 for (int i = 0; i < length; i++) { 41 result[i] = parents[random.Next(parents.Count)][i]; 42 } 43 } catch (IndexOutOfRangeException) { 44 throw new InvalidOperationException("Cannot apply multicrossover to real vectors of different length."); 45 } 46 return result; 41 47 } 42 48 43 public override IOperation Apply(IScope scope) { 44 int rho = GetVariableValue<IntData>("Rho", scope, true).Data; 45 // with just 1 parent no recombination is necessary/possible 46 if (rho == 1) return null; 47 IRandom random = GetVariableValue<IRandom>("Random", scope, true); 48 49 if (scope.SubScopes.Count % rho != 0) 50 throw new InvalidOperationException("Number of parents is not a multiple of rho"); 51 int lambda = scope.SubScopes.Count / rho; 52 IList<double[]> parents = new List<double[]>(rho); 53 54 for (int i = 0; i < lambda; i++) { 55 IScope childScope = new Scope(i.ToString()); 56 double[] childGene = (double[])scope.SubScopes[0].GetVariableValue<DoubleArrayData>("RealVector", false).Data.Clone(); 57 parents.Clear(); 58 for (int j = 0; j < rho; j++) { 59 IScope parent = scope.SubScopes[0]; 60 parents.Add(parent.GetVariableValue<DoubleArrayData>("RealVector", false).Data); 61 scope.RemoveSubScope(parent); 62 } 63 // actual discrete recombination 64 for (int x = 0; x < childGene.Length; x++) { 65 childGene[x] = parents[random.Next(rho)][x]; 66 } 67 childScope.AddVariable(new Variable(scope.SubScopes[0].TranslateName("RealVector"), new DoubleArrayData(childGene))); 68 scope.AddSubScope(childScope); 69 } 70 return null; 49 protected override double[] Cross(IScope scope, IRandom random, IList<double[]> parents) { 50 return Apply(random, parents); 71 51 } 72 52 } -
trunk/sources/HeuristicLab.RealVector/HeuristicLab.RealVector.csproj
r105 r111 47 47 <Compile Include="BoundsChecker.cs" /> 48 48 <Compile Include="DiscreteCrossover.cs" /> 49 <Compile Include="DiscreteMultiCrossover.cs" /> 49 50 <Compile Include="HeuristicCrossover.cs" /> 50 <Compile Include="Intermediate Recombination.cs" />51 <Compile Include="IntermediateMultiCrossover.cs" /> 51 52 <Compile Include="MichalewiczNonUniformAllPositionsManipulator.cs" /> 52 53 <Compile Include="MichalewiczNonUniformOnePositionManipulator.cs" /> 53 54 <Compile Include="RandomConvexCrossover.cs" /> 54 55 <Compile Include="LocalCrossover.cs" /> 55 <Compile Include="DiscreteRecombination.cs" /> 56 <Compile Include="SelfAdaptiveDiscreteRecombination.cs" /> 57 <Compile Include="SelfAdaptiveIntermediateRecombination.cs" /> 56 <Compile Include="RealVectorMultiCrossoverBase.cs" /> 57 <Compile Include="RealVectorSelfAdaptiveMultiCrossoverBase.cs" /> 58 <Compile Include="SelfAdaptiveDiscreteMultiCrossover.cs" /> 59 <Compile Include="SelfAdaptiveIntermediateMultiCrossover.cs" /> 58 60 <Compile Include="SelfAdaptiveNormalAllPositionsManipulator.cs" /> 59 61 <Compile Include="UniformAllPositionsManipulator.cs" /> -
trunk/sources/HeuristicLab.RealVector/IntermediateMultiCrossover.cs
r110 r111 27 27 28 28 namespace HeuristicLab.RealVector { 29 public class Intermediate Recombination : OperatorBase {29 public class IntermediateMultiCrossover : RealVectorMultiCrossoverBase { 30 30 public override string Description { 31 31 get { 32 return @" Intermediate recombinationcreates a new offspring by computing the centroid of a number of parents";32 return @"This creates a new offspring by computing the centroid of a number of parents"; 33 33 } 34 34 } 35 35 36 public IntermediateRecombination() 37 : base() { 38 AddVariableInfo(new VariableInfo("Random", "Pseudo random number generator", typeof(IRandom), VariableKind.In)); 39 AddVariableInfo(new VariableInfo("Rho", "Amount of parents to recombine", typeof(IntData), VariableKind.In)); 40 AddVariableInfo(new VariableInfo("RealVector", "Parent and child real vector", typeof(DoubleArrayData), VariableKind.In | VariableKind.New)); 36 public static double[] Apply(IList<double[]> parents) { 37 int length = parents[0].Length; 38 double[] result = new double[length]; 39 for (int i = 0; i < length; i++) { 40 double sum = 0.0; 41 for (int j = 0; j < parents.Count; j++) 42 sum += parents[j][i]; 43 result[i] = sum / parents.Count; 44 } 45 return result; 41 46 } 42 47 43 public override IOperation Apply(IScope scope) { 44 int rho = GetVariableValue<IntData>("Rho", scope, true).Data; 45 // with just 1 parent no recombination is necessary/possible 46 if (rho == 1) return null; 47 IRandom random = GetVariableValue<IRandom>("Random", scope, true); 48 49 if (scope.SubScopes.Count % rho != 0) 50 throw new InvalidOperationException("Number of parents is not a multiple of rho"); 51 int lambda = scope.SubScopes.Count / rho; 52 IList<double[]> parents = new List<double[]>(rho); 53 54 for (int i = 0; i < lambda; i++) { 55 IScope childScope = new Scope(i.ToString()); 56 double[] childGene = (double[])scope.SubScopes[0].GetVariableValue<DoubleArrayData>("RealVector", false).Data.Clone(); 57 parents.Clear(); 58 for (int j = 0; j < rho; j++) { 59 IScope parent = scope.SubScopes[0]; 60 parents.Add(parent.GetVariableValue<DoubleArrayData>("RealVector", false).Data); 61 scope.RemoveSubScope(parent); 62 } 63 // actual intermediate recombination 64 for (int x = 0; x < childGene.Length; x++) { 65 double sum = 0.0; 66 for (int y = 0; y < rho; y++) { 67 sum += parents[y][x]; 68 } 69 childGene[x] = sum / rho; 70 } 71 childScope.AddVariable(new Variable(scope.SubScopes[0].TranslateName("RealVector"), new DoubleArrayData(childGene))); 72 scope.AddSubScope(childScope); 73 } 74 return null; 48 protected override double[] Cross(IScope scope, IRandom random, IList<double[]> parents) { 49 return Apply(parents); 75 50 } 76 51 } -
trunk/sources/HeuristicLab.RealVector/SelfAdaptiveDiscreteMultiCrossover.cs
r110 r111 27 27 28 28 namespace HeuristicLab.RealVector { 29 public class SelfAdaptiveDiscrete Recombination : DiscreteRecombination{29 public class SelfAdaptiveDiscreteMultiCrossover : RealVectorSelfAdaptiveMultiCrossoverBase { 30 30 public override string Description { 31 31 get { 32 return @" Self adaptive Discrete/dominant recombinationcreates a new offspring by combining the alleles in the parents such that each allele is randomly selected from one parent. It will also use the same strategy to combine the endogenous strategy parameter vector.";32 return @"This creates a new offspring by combining the alleles in the parents such that each allele is randomly selected from one parent. It will also use the same strategy to combine the endogenous strategy parameter vector."; 33 33 } 34 34 } 35 35 36 public SelfAdaptiveDiscreteRecombination() 37 : base() { 38 AddVariableInfo(new VariableInfo("StrategyVector", "Vector containing the endogenous strategy parameters", typeof(DoubleArrayData), VariableKind.In)); 36 public static void Apply(IRandom random, IList<double[]> parents, IList<double[]> strategyParametersList, out double[] childIndividual, out double[] strategyParameters) { 37 childIndividual = new double[parents[0].Length]; 38 strategyParameters = new double[strategyParametersList[0].Length]; 39 try { 40 for (int i = 0; i < childIndividual.Length; i++) { 41 int nextParent = random.Next(parents.Count); 42 childIndividual[i] = parents[nextParent][i]; 43 strategyParameters[i] = strategyParametersList[nextParent][i]; 44 } 45 } catch (IndexOutOfRangeException) { 46 throw new InvalidOperationException("Cannot apply self adaptive multicrossover to real vectors of different length."); 47 } 39 48 } 40 49 41 public override IOperation Apply(IScope scope) { 42 int rho = GetVariableValue<IntData>("Rho", scope, true).Data; 43 // with just 1 parent no recombination is necessary/possible 44 if (rho == 1) return null; 45 IRandom random = GetVariableValue<IRandom>("Random", scope, true); 46 47 if (scope.SubScopes.Count % rho != 0) 48 throw new InvalidOperationException("Number of parents is not a multiple of rho"); 49 int lambda = scope.SubScopes.Count / rho; 50 IList<double[]> parents = new List<double[]>(rho); 51 IList<double[]> parentsStrategy = new List<double[]>(rho); 52 53 for (int i = 0; i < lambda; i++) { 54 IScope childScope = new Scope(i.ToString()); 55 double[] childGene = (double[])scope.SubScopes[0].GetVariableValue<DoubleArrayData>("RealVector", false).Data.Clone(); 56 double[] strategyParams = (double[])scope.SubScopes[0].GetVariableValue<DoubleArrayData>("StrategyVector", false).Data.Clone(); 57 parents.Clear(); 58 for (int j = 0; j < rho; j++) { 59 IScope parent = scope.SubScopes[0]; 60 parents.Add(parent.GetVariableValue<DoubleArrayData>("RealVector", false).Data); 61 parentsStrategy.Add(parent.GetVariableValue<DoubleArrayData>("StrategyVector", false).Data); 62 scope.RemoveSubScope(parent); 63 } 64 // actual discrete recombination 65 if (childGene.Length != strategyParams.Length) 66 throw new InvalidOperationException("ERROR: strategy vector must be as long as there are dimensions"); 67 68 for (int x = 0; x < childGene.Length; x++) { 69 int nextParent = random.Next(rho); 70 childGene[x] = parents[nextParent][x]; 71 strategyParams[x] = parentsStrategy[nextParent][x]; 72 } 73 childScope.AddVariable(new Variable(scope.SubScopes[0].TranslateName("RealVector"), new DoubleArrayData(childGene))); 74 childScope.AddVariable(new Variable(scope.SubScopes[0].TranslateName("StrategyVector"), new DoubleArrayData(strategyParams))); 75 scope.AddSubScope(childScope); 76 } 77 return null; 50 protected override void Cross(IScope scope, IRandom random, IList<double[]> parents, IList<double[]> strategyParametersList, out double[] childIndividual, out double[] strategyParameters) { 51 Apply(random, parents, strategyParametersList, out childIndividual, out strategyParameters); 78 52 } 79 53 } -
trunk/sources/HeuristicLab.RealVector/SelfAdaptiveIntermediateMultiCrossover.cs
r110 r111 27 27 28 28 namespace HeuristicLab.RealVector { 29 public class SelfAdaptiveIntermediate Recombination : DiscreteRecombination{29 public class SelfAdaptiveIntermediateMultiCrossover : RealVectorSelfAdaptiveMultiCrossoverBase { 30 30 public override string Description { 31 31 get { 32 return @" Self adaptive intermediate recombinationcreates a new offspring by computing the centroid of the parents. It will also use the same strategy to combine the endogenous strategy parameter vector.";32 return @"This creates a new offspring by computing the centroid of the parents. It will also use the same strategy to combine the endogenous strategy parameter vector."; 33 33 } 34 34 } 35 35 36 public SelfAdaptiveIntermediateRecombination()37 : base() {38 AddVariableInfo(new VariableInfo("StrategyVector", "Vector containing the endogenous strategy parameters", typeof(DoubleArrayData), VariableKind.In));36 public static void Apply(IList<double[]> parents, IList<double[]> strategyParametersList, out double[] childIndividual, out double[] strategyParameters) { 37 childIndividual = IntermediateMultiCrossover.Apply(parents); 38 strategyParameters = IntermediateMultiCrossover.Apply(strategyParametersList); 39 39 } 40 40 41 public override IOperation Apply(IScope scope) { 42 int rho = GetVariableValue<IntData>("Rho", scope, true).Data; 43 // with just 1 parent no recombination is necessary/possible 44 if (rho == 1) return null; 45 IRandom random = GetVariableValue<IRandom>("Random", scope, true); 46 47 if (scope.SubScopes.Count % rho != 0) 48 throw new InvalidOperationException("Number of parents is not a multiple of rho"); 49 int lambda = scope.SubScopes.Count / rho; 50 IList<double[]> parents = new List<double[]>(rho); 51 IList<double[]> parentsStrategy = new List<double[]>(rho); 52 53 for (int i = 0; i < lambda; i++) { 54 IScope childScope = new Scope(i.ToString()); 55 double[] childGene = (double[])scope.SubScopes[0].GetVariableValue<DoubleArrayData>("RealVector", false).Data.Clone(); 56 double[] strategyParams = (double[])scope.SubScopes[0].GetVariableValue<DoubleArrayData>("StrategyVector", false).Data.Clone(); 57 parents.Clear(); 58 for (int j = 0; j < rho; j++) { 59 IScope parent = scope.SubScopes[0]; 60 parents.Add(parent.GetVariableValue<DoubleArrayData>("RealVector", false).Data); 61 parentsStrategy.Add(parent.GetVariableValue<DoubleArrayData>("StrategyVector", false).Data); 62 scope.RemoveSubScope(parent); 63 } 64 // actual discrete recombination 65 if (childGene.Length != strategyParams.Length) 66 throw new InvalidOperationException("ERROR: strategy vector must be as long as there are dimensions"); 67 68 for (int x = 0; x < childGene.Length; x++) { 69 double sum = 0.0, sumStrategy = 0.0; 70 for (int y = 0; y < rho; y++) { 71 sum += parents[y][x]; 72 sumStrategy += parentsStrategy[y][x]; 73 } 74 childGene[x] = sum / rho; 75 strategyParams[x] = sumStrategy / rho; 76 } 77 childScope.AddVariable(new Variable(scope.SubScopes[0].TranslateName("RealVector"), new DoubleArrayData(childGene))); 78 childScope.AddVariable(new Variable(scope.SubScopes[0].TranslateName("StrategyVector"), new DoubleArrayData(strategyParams))); 79 scope.AddSubScope(childScope); 80 } 81 return null; 41 protected override void Cross(IScope scope, IRandom random, IList<double[]> parents, IList<double[]> strategyParametersList, out double[] childIndividual, out double[] strategyParameters) { 42 Apply(parents, strategyParametersList, out childIndividual, out strategyParameters); 82 43 } 83 44 }
Note: See TracChangeset
for help on using the changeset viewer.