- Timestamp:
- 03/10/14 14:43:37 (11 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
branches/ClassificationModelComparison/HeuristicLab.Algorithms.DataAnalysis/3.4/Linear/ZeroR.cs
r9074 r10568 20 20 #endregion 21 21 22 using System.Collections.Generic;23 22 using System.Linq; 24 23 using HeuristicLab.Common; 25 24 using HeuristicLab.Core; 26 using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;27 25 using HeuristicLab.Optimization; 28 26 using HeuristicLab.Persistence.Default.CompositeSerializers.Storable; 29 27 using HeuristicLab.Problems.DataAnalysis; 30 using HeuristicLab.Problems.DataAnalysis.Symbolic;31 using HeuristicLab.Problems.DataAnalysis.Symbolic.Classification;32 28 33 29 namespace HeuristicLab.Algorithms.DataAnalysis { … … 62 58 Dataset dataset = problemData.Dataset; 63 59 string target = problemData.TargetVariable; 64 var classValuesEnumerator = problemData.ClassValues.GetEnumerator(); 65 var classValuesInDatasetEnumerator = dataset.GetDoubleValues(target, problemData.TrainingIndices).GetEnumerator(); 60 var targetValues = dataset.GetDoubleValues(target, problemData.TrainingIndices); 66 61 67 Dictionary<double, int> classValuesCount = new Dictionary<double, int>(problemData.ClassValues.Count()); 62 var dominantClass = targetValues.GroupBy(x => x).ToDictionary(g => g.Key, g => g.Count()) 63 .MaxItems(kvp => kvp.Value).Select(x => x.Key).First(); 68 64 69 //initialize 70 while (classValuesEnumerator.MoveNext()) { 71 classValuesCount[classValuesEnumerator.Current] = 0; 72 } 73 74 //count occurence of classes 75 while (classValuesInDatasetEnumerator.MoveNext()) { 76 classValuesCount[classValuesInDatasetEnumerator.Current] += 1; 77 } 78 79 classValuesEnumerator.Reset(); 80 double mostOccurences = -1; 81 double bestClass = double.NaN; 82 while (classValuesEnumerator.MoveNext()) { 83 if (classValuesCount[classValuesEnumerator.Current] > mostOccurences) { 84 mostOccurences = classValuesCount[classValuesEnumerator.Current]; 85 bestClass = classValuesEnumerator.Current; 86 } 87 } 88 89 ConstantClassificationModel model = new ConstantClassificationModel(bestClass); 90 ConstantClassificationSolution solution = new ConstantClassificationSolution(model, (IClassificationProblemData)problemData.Clone()); 91 65 var model = new ConstantClassificationModel(dominantClass); 66 var solution = new ConstantClassificationSolution(model, (IClassificationProblemData)problemData.Clone()); 92 67 return solution; 93 }94 95 private static SymbolicDiscriminantFunctionClassificationModel CreateDiscriminantFunctionModel(ISymbolicExpressionTree tree,96 ISymbolicDataAnalysisExpressionTreeInterpreter interpreter,97 IClassificationProblemData problemData,98 IEnumerable<int> rows,99 IEnumerable<double> classValues) {100 var model = new SymbolicDiscriminantFunctionClassificationModel(tree, interpreter, new AccuracyMaximizationThresholdCalculator());101 IList<double> thresholds = new List<double>();102 double last = 0;103 foreach (double item in classValues) {104 if (thresholds.Count == 0) {105 thresholds.Add(double.NegativeInfinity);106 } else {107 thresholds.Add((last + item) / 2);108 }109 last = item;110 }111 model.SetThresholdsAndClassValues(thresholds, classValues);112 return model;113 68 } 114 69 }
Note: See TracChangeset
for help on using the changeset viewer.