1 | /*
|
---|
2 | * SVM.NET Library
|
---|
3 | * Copyright (C) 2008 Matthew Johnson
|
---|
4 | *
|
---|
5 | * This program is free software: you can redistribute it and/or modify
|
---|
6 | * it under the terms of the GNU General Public License as published by
|
---|
7 | * the Free Software Foundation, either version 3 of the License, or
|
---|
8 | * (at your option) any later version.
|
---|
9 | *
|
---|
10 | * This program is distributed in the hope that it will be useful,
|
---|
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | * GNU General Public License for more details.
|
---|
14 | *
|
---|
15 | * You should have received a copy of the GNU General Public License
|
---|
16 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
17 | */
|
---|
18 |
|
---|
19 |
|
---|
20 | using System;
|
---|
21 | using System.Collections.Generic;
|
---|
22 |
|
---|
23 | namespace SVM
|
---|
24 | {
|
---|
25 | /// <summary>
|
---|
26 | /// Class encapsulating a precomputed kernel, where each position indicates the similarity score for two items in the training data.
|
---|
27 | /// </summary>
|
---|
28 | [Serializable]
|
---|
29 | public class PrecomputedKernel
|
---|
30 | {
|
---|
31 | private float[,] _similarities;
|
---|
32 | private int _rows;
|
---|
33 | private int _columns;
|
---|
34 |
|
---|
35 | /// <summary>
|
---|
36 | /// Constructor.
|
---|
37 | /// </summary>
|
---|
38 | /// <param name="similarities">The similarity scores between all items in the training data</param>
|
---|
39 | public PrecomputedKernel(float[,] similarities)
|
---|
40 | {
|
---|
41 | _similarities = similarities;
|
---|
42 | _rows = _similarities.GetLength(0);
|
---|
43 | _columns = _similarities.GetLength(1);
|
---|
44 | }
|
---|
45 |
|
---|
46 | /// <summary>
|
---|
47 | /// Constructor.
|
---|
48 | /// </summary>
|
---|
49 | /// <param name="nodes">Nodes for self-similarity analysis</param>
|
---|
50 | /// <param name="param">Parameters to use when computing similarities</param>
|
---|
51 | public PrecomputedKernel(List<Node[]> nodes, Parameter param)
|
---|
52 | {
|
---|
53 | _rows = nodes.Count;
|
---|
54 | _columns = _rows;
|
---|
55 | _similarities = new float[_rows, _columns];
|
---|
56 | for (int r = 0; r < _rows; r++)
|
---|
57 | {
|
---|
58 | for (int c = 0; c < r; c++)
|
---|
59 | _similarities[r, c] = _similarities[c, r];
|
---|
60 | _similarities[r, r] = 1;
|
---|
61 | for (int c = r + 1; c < _columns; c++)
|
---|
62 | _similarities[r, c] = (float)Kernel.KernelFunction(nodes[r], nodes[c], param);
|
---|
63 | }
|
---|
64 | }
|
---|
65 |
|
---|
66 | /// <summary>
|
---|
67 | /// Constructor.
|
---|
68 | /// </summary>
|
---|
69 | /// <param name="rows">Nodes to use as the rows of the matrix</param>
|
---|
70 | /// <param name="columns">Nodes to use as the columns of the matrix</param>
|
---|
71 | /// <param name="param">Parameters to use when compute similarities</param>
|
---|
72 | public PrecomputedKernel(List<Node[]> rows, List<Node[]> columns, Parameter param)
|
---|
73 | {
|
---|
74 | _rows = rows.Count;
|
---|
75 | _columns = columns.Count;
|
---|
76 | _similarities = new float[_rows, _columns];
|
---|
77 | for (int r = 0; r < _rows; r++)
|
---|
78 | for (int c = 0; c < _columns; c++)
|
---|
79 | _similarities[r, c] = (float)Kernel.KernelFunction(rows[r], columns[c], param);
|
---|
80 | }
|
---|
81 |
|
---|
82 | /// <summary>
|
---|
83 | /// Constructs a <see cref="Problem"/> object using the labels provided. If a label is set to "0" that item is ignored.
|
---|
84 | /// </summary>
|
---|
85 | /// <param name="rowLabels">The labels for the row items</param>
|
---|
86 | /// <param name="columnLabels">The labels for the column items</param>
|
---|
87 | /// <returns>A <see cref="Problem"/> object</returns>
|
---|
88 | public Problem Compute(double[] rowLabels, double[] columnLabels)
|
---|
89 | {
|
---|
90 | List<Node[]> X = new List<Node[]>();
|
---|
91 | List<double> Y = new List<double>();
|
---|
92 | int maxIndex = 0;
|
---|
93 | for (int i = 0; i < columnLabels.Length; i++)
|
---|
94 | if (columnLabels[i] != 0)
|
---|
95 | maxIndex++;
|
---|
96 | maxIndex++;
|
---|
97 | for (int r = 0; r < _rows; r++)
|
---|
98 | {
|
---|
99 | if (rowLabels[r] == 0)
|
---|
100 | continue;
|
---|
101 | List<Node> nodes = new List<Node>();
|
---|
102 | nodes.Add(new Node(0, X.Count + 1));
|
---|
103 | for (int c = 0; c < _columns; c++)
|
---|
104 | {
|
---|
105 | if (columnLabels[c] == 0)
|
---|
106 | continue;
|
---|
107 | double value = _similarities[r, c];
|
---|
108 | nodes.Add(new Node(nodes.Count, value));
|
---|
109 | }
|
---|
110 | X.Add(nodes.ToArray());
|
---|
111 | Y.Add(rowLabels[r]);
|
---|
112 | }
|
---|
113 | return new Problem(X.Count, Y.ToArray(), X.ToArray(), maxIndex);
|
---|
114 | }
|
---|
115 |
|
---|
116 | }
|
---|
117 | }
|
---|