1 | /*
|
---|
2 | * SVM.NET Library
|
---|
3 | * Copyright (C) 2008 Matthew Johnson
|
---|
4 | *
|
---|
5 | * This program is free software: you can redistribute it and/or modify
|
---|
6 | * it under the terms of the GNU General Public License as published by
|
---|
7 | * the Free Software Foundation, either version 3 of the License, or
|
---|
8 | * (at your option) any later version.
|
---|
9 | *
|
---|
10 | * This program is distributed in the hope that it will be useful,
|
---|
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | * GNU General Public License for more details.
|
---|
14 | *
|
---|
15 | * You should have received a copy of the GNU General Public License
|
---|
16 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
17 | */
|
---|
18 |
|
---|
19 |
|
---|
20 | using System;
|
---|
21 | using System.Collections.Generic;
|
---|
22 | using System.IO;
|
---|
23 | using System.Globalization;
|
---|
24 |
|
---|
25 | namespace SVM
|
---|
26 | {
|
---|
27 | /// <summary>
|
---|
28 | /// Class encoding a member of a ranked set of labels.
|
---|
29 | /// </summary>
|
---|
30 | public class RankPair : IComparable<RankPair>
|
---|
31 | {
|
---|
32 | private double _score, _label;
|
---|
33 |
|
---|
34 | /// <summary>
|
---|
35 | /// Constructor.
|
---|
36 | /// </summary>
|
---|
37 | /// <param name="score">Score for this pair</param>
|
---|
38 | /// <param name="label">Label associated with the given score</param>
|
---|
39 | public RankPair(double score, double label)
|
---|
40 | {
|
---|
41 | _score = score;
|
---|
42 | _label = label;
|
---|
43 | }
|
---|
44 |
|
---|
45 | /// <summary>
|
---|
46 | /// The score for this pair.
|
---|
47 | /// </summary>
|
---|
48 | public double Score
|
---|
49 | {
|
---|
50 | get
|
---|
51 | {
|
---|
52 | return _score;
|
---|
53 | }
|
---|
54 | }
|
---|
55 |
|
---|
56 | /// <summary>
|
---|
57 | /// The Label for this pair.
|
---|
58 | /// </summary>
|
---|
59 | public double Label
|
---|
60 | {
|
---|
61 | get
|
---|
62 | {
|
---|
63 | return _label;
|
---|
64 | }
|
---|
65 | }
|
---|
66 |
|
---|
67 | #region IComparable<RankPair> Members
|
---|
68 |
|
---|
69 | /// <summary>
|
---|
70 | /// Compares this pair to another. It will end up in a sorted list in decending score order.
|
---|
71 | /// </summary>
|
---|
72 | /// <param name="other">The pair to compare to</param>
|
---|
73 | /// <returns>Whether this should come before or after the argument</returns>
|
---|
74 | public int CompareTo(RankPair other)
|
---|
75 | {
|
---|
76 | return other.Score.CompareTo(Score);
|
---|
77 | }
|
---|
78 |
|
---|
79 | #endregion
|
---|
80 |
|
---|
81 | /// <summary>
|
---|
82 | /// Returns a string representation of this pair.
|
---|
83 | /// </summary>
|
---|
84 | /// <returns>A string in the for Score:Label</returns>
|
---|
85 | public override string ToString()
|
---|
86 | {
|
---|
87 | return string.Format("{0}:{1}", Score, Label);
|
---|
88 | }
|
---|
89 | }
|
---|
90 |
|
---|
91 | /// <summary>
|
---|
92 | /// Class encoding the point on a 2D curve.
|
---|
93 | /// </summary>
|
---|
94 | public class CurvePoint
|
---|
95 | {
|
---|
96 | private float _x, _y;
|
---|
97 |
|
---|
98 | /// <summary>
|
---|
99 | /// Constructor.
|
---|
100 | /// </summary>
|
---|
101 | /// <param name="x">X coordinate</param>
|
---|
102 | /// <param name="y">Y coordinate</param>
|
---|
103 | public CurvePoint(float x, float y)
|
---|
104 | {
|
---|
105 | _x = x;
|
---|
106 | _y = y;
|
---|
107 | }
|
---|
108 |
|
---|
109 | /// <summary>
|
---|
110 | /// X coordinate
|
---|
111 | /// </summary>
|
---|
112 | public float X
|
---|
113 | {
|
---|
114 | get
|
---|
115 | {
|
---|
116 | return _x;
|
---|
117 | }
|
---|
118 | }
|
---|
119 |
|
---|
120 | /// <summary>
|
---|
121 | /// Y coordinate
|
---|
122 | /// </summary>
|
---|
123 | public float Y
|
---|
124 | {
|
---|
125 | get
|
---|
126 | {
|
---|
127 | return _y;
|
---|
128 | }
|
---|
129 | }
|
---|
130 |
|
---|
131 | /// <summary>
|
---|
132 | /// Creates a string representation of this point.
|
---|
133 | /// </summary>
|
---|
134 | /// <returns>string in the form (x, y)</returns>
|
---|
135 | public override string ToString()
|
---|
136 | {
|
---|
137 | return string.Format("({0}, {1})", _x, _y);
|
---|
138 | }
|
---|
139 | }
|
---|
140 |
|
---|
141 | /// <summary>
|
---|
142 | /// Class which evaluates an SVM model using several standard techniques.
|
---|
143 | /// </summary>
|
---|
144 | public class PerformanceEvaluator
|
---|
145 | {
|
---|
146 | private class ChangePoint
|
---|
147 | {
|
---|
148 | public ChangePoint(int tp, int fp, int tn, int fn)
|
---|
149 | {
|
---|
150 | TP = tp;
|
---|
151 | FP = fp;
|
---|
152 | TN = tn;
|
---|
153 | FN = fn;
|
---|
154 | }
|
---|
155 |
|
---|
156 | public int TP, FP, TN, FN;
|
---|
157 |
|
---|
158 | public override string ToString()
|
---|
159 | {
|
---|
160 | return string.Format("{0}:{1}:{2}:{3}", TP, FP, TN, FN);
|
---|
161 | }
|
---|
162 | }
|
---|
163 |
|
---|
164 | private List<CurvePoint> _prCurve;
|
---|
165 | private double _ap;
|
---|
166 |
|
---|
167 | private List<CurvePoint> _rocCurve;
|
---|
168 | private double _auc;
|
---|
169 |
|
---|
170 | private List<RankPair> _data;
|
---|
171 | private List<ChangePoint> _changes;
|
---|
172 |
|
---|
173 | /// <summary>
|
---|
174 | /// Constructor.
|
---|
175 | /// </summary>
|
---|
176 | /// <param name="set">A pre-computed ranked pair set</param>
|
---|
177 | public PerformanceEvaluator(List<RankPair> set)
|
---|
178 | {
|
---|
179 | _data = set;
|
---|
180 | computeStatistics();
|
---|
181 | }
|
---|
182 |
|
---|
183 | /// <summary>
|
---|
184 | /// Constructor.
|
---|
185 | /// </summary>
|
---|
186 | /// <param name="model">Model to evaluate</param>
|
---|
187 | /// <param name="problem">Problem to evaluate</param>
|
---|
188 | /// <param name="category">Label to be evaluate for</param>
|
---|
189 | public PerformanceEvaluator(Model model, Problem problem, double category) : this(model, problem, category, "tmp.results") { }
|
---|
190 | /// <summary>
|
---|
191 | /// Constructor.
|
---|
192 | /// </summary>
|
---|
193 | /// <param name="model">Model to evaluate</param>
|
---|
194 | /// <param name="problem">Problem to evaluate</param>
|
---|
195 | /// <param name="resultsFile">Results file for output</param>
|
---|
196 | /// <param name="category">Category to evaluate for</param>
|
---|
197 | public PerformanceEvaluator(Model model, Problem problem, double category, string resultsFile)
|
---|
198 | {
|
---|
199 | Prediction.Predict(problem, resultsFile, model, true);
|
---|
200 | parseResultsFile(resultsFile, problem.Y, category);
|
---|
201 |
|
---|
202 | computeStatistics();
|
---|
203 | }
|
---|
204 |
|
---|
205 | /// <summary>
|
---|
206 | /// Constructor.
|
---|
207 | /// </summary>
|
---|
208 | /// <param name="resultsFile">Results file</param>
|
---|
209 | /// <param name="correctLabels">The correct labels of each data item</param>
|
---|
210 | /// <param name="category">The category to evaluate for</param>
|
---|
211 | public PerformanceEvaluator(string resultsFile, double[] correctLabels, double category)
|
---|
212 | {
|
---|
213 | parseResultsFile(resultsFile, correctLabels, category);
|
---|
214 | computeStatistics();
|
---|
215 | }
|
---|
216 |
|
---|
217 | private void parseResultsFile(string resultsFile, double[] labels, double category)
|
---|
218 | {
|
---|
219 | StreamReader input = new StreamReader(resultsFile);
|
---|
220 | string[] parts = input.ReadLine().Split(new char[] { ' ' }, StringSplitOptions.RemoveEmptyEntries);
|
---|
221 | int confidenceIndex = -1;
|
---|
222 | for (int i = 1; i < parts.Length; i++)
|
---|
223 | if (double.Parse(parts[i], CultureInfo.InvariantCulture) == category)
|
---|
224 | {
|
---|
225 | confidenceIndex = i;
|
---|
226 | break;
|
---|
227 | }
|
---|
228 | _data = new List<RankPair>();
|
---|
229 | for (int i = 0; i < labels.Length; i++)
|
---|
230 | {
|
---|
231 | parts = input.ReadLine().Split(new char[] { ' ' }, StringSplitOptions.RemoveEmptyEntries);
|
---|
232 | double confidence = double.Parse(parts[confidenceIndex], CultureInfo.InvariantCulture);
|
---|
233 | _data.Add(new RankPair(confidence, labels[i] == category ? 1 : 0));
|
---|
234 | }
|
---|
235 | input.Close();
|
---|
236 | }
|
---|
237 |
|
---|
238 | private void computeStatistics()
|
---|
239 | {
|
---|
240 | _data.Sort();
|
---|
241 |
|
---|
242 | findChanges();
|
---|
243 | computePR();
|
---|
244 | computeRoC();
|
---|
245 | }
|
---|
246 |
|
---|
247 | private void findChanges()
|
---|
248 | {
|
---|
249 | int tp, fp, tn, fn;
|
---|
250 | tp = fp = tn = fn = 0;
|
---|
251 | for (int i = 0; i < _data.Count; i++)
|
---|
252 | {
|
---|
253 | if (_data[i].Label == 1)
|
---|
254 | fn++;
|
---|
255 | else tn++;
|
---|
256 | }
|
---|
257 | _changes = new List<ChangePoint>();
|
---|
258 | for (int i = 0; i < _data.Count; i++)
|
---|
259 | {
|
---|
260 | if (_data[i].Label == 1)
|
---|
261 | {
|
---|
262 | tp++;
|
---|
263 | fn--;
|
---|
264 | }
|
---|
265 | else
|
---|
266 | {
|
---|
267 | fp++;
|
---|
268 | tn--;
|
---|
269 | }
|
---|
270 | _changes.Add(new ChangePoint(tp, fp, tn, fn));
|
---|
271 | }
|
---|
272 | }
|
---|
273 |
|
---|
274 | private float computePrecision(ChangePoint p)
|
---|
275 | {
|
---|
276 | return (float)p.TP / (p.TP + p.FP);
|
---|
277 | }
|
---|
278 |
|
---|
279 | private float computeRecall(ChangePoint p)
|
---|
280 | {
|
---|
281 | return (float)p.TP / (p.TP + p.FN);
|
---|
282 | }
|
---|
283 |
|
---|
284 | private void computePR()
|
---|
285 | {
|
---|
286 | _prCurve = new List<CurvePoint>();
|
---|
287 | _prCurve.Add(new CurvePoint(0, 1));
|
---|
288 | float precision = computePrecision(_changes[0]);
|
---|
289 | float recall = computeRecall(_changes[0]);
|
---|
290 | float precisionSum = 0;
|
---|
291 | if (_changes[0].TP > 0)
|
---|
292 | {
|
---|
293 | precisionSum += precision;
|
---|
294 | _prCurve.Add(new CurvePoint(recall, precision));
|
---|
295 | }
|
---|
296 | for (int i = 1; i < _changes.Count; i++)
|
---|
297 | {
|
---|
298 | precision = computePrecision(_changes[i]);
|
---|
299 | recall = computeRecall(_changes[i]);
|
---|
300 | if (_changes[i].TP > _changes[i - 1].TP)
|
---|
301 | {
|
---|
302 | precisionSum += precision;
|
---|
303 | _prCurve.Add(new CurvePoint(recall, precision));
|
---|
304 | }
|
---|
305 | }
|
---|
306 | _prCurve.Add(new CurvePoint(1, (float)(_changes[0].TP + _changes[0].FN) / (_changes[0].FP + _changes[0].TN)));
|
---|
307 | _ap = precisionSum / (_changes[0].FN + _changes[0].TP);
|
---|
308 | }
|
---|
309 |
|
---|
310 | /// <summary>
|
---|
311 | /// Writes the Precision-Recall curve to a tab-delimited file.
|
---|
312 | /// </summary>
|
---|
313 | /// <param name="filename">Filename for output</param>
|
---|
314 | public void WritePRCurve(string filename)
|
---|
315 | {
|
---|
316 | StreamWriter output = new StreamWriter(filename);
|
---|
317 | output.WriteLine(_ap);
|
---|
318 | for (int i = 0; i < _prCurve.Count; i++)
|
---|
319 | output.WriteLine("{0}\t{1}", _prCurve[i].X, _prCurve[i].Y);
|
---|
320 | output.Close();
|
---|
321 | }
|
---|
322 |
|
---|
323 | /// <summary>
|
---|
324 | /// Writes the Receiver Operating Characteristic curve to a tab-delimited file.
|
---|
325 | /// </summary>
|
---|
326 | /// <param name="filename">Filename for output</param>
|
---|
327 | public void WriteROCCurve(string filename)
|
---|
328 | {
|
---|
329 | StreamWriter output = new StreamWriter(filename);
|
---|
330 | output.WriteLine(_auc);
|
---|
331 | for (int i = 0; i < _rocCurve.Count; i++)
|
---|
332 | output.WriteLine("{0}\t{1}", _rocCurve[i].X, _rocCurve[i].Y);
|
---|
333 | output.Close();
|
---|
334 | }
|
---|
335 |
|
---|
336 | /// <summary>
|
---|
337 | /// Receiver Operating Characteristic curve
|
---|
338 | /// </summary>
|
---|
339 | public List<CurvePoint> ROCCurve
|
---|
340 | {
|
---|
341 | get
|
---|
342 | {
|
---|
343 | return _rocCurve;
|
---|
344 | }
|
---|
345 | }
|
---|
346 |
|
---|
347 | /// <summary>
|
---|
348 | /// Returns the area under the ROC Curve
|
---|
349 | /// </summary>
|
---|
350 | public double AuC
|
---|
351 | {
|
---|
352 | get
|
---|
353 | {
|
---|
354 | return _auc;
|
---|
355 | }
|
---|
356 | }
|
---|
357 |
|
---|
358 | /// <summary>
|
---|
359 | /// Precision-Recall curve
|
---|
360 | /// </summary>
|
---|
361 | public List<CurvePoint> PRCurve
|
---|
362 | {
|
---|
363 | get
|
---|
364 | {
|
---|
365 | return _prCurve;
|
---|
366 | }
|
---|
367 | }
|
---|
368 |
|
---|
369 | /// <summary>
|
---|
370 | /// The average precision
|
---|
371 | /// </summary>
|
---|
372 | public double AP
|
---|
373 | {
|
---|
374 | get
|
---|
375 | {
|
---|
376 | return _ap;
|
---|
377 | }
|
---|
378 | }
|
---|
379 |
|
---|
380 | private float computeTPR(ChangePoint cp)
|
---|
381 | {
|
---|
382 | return computeRecall(cp);
|
---|
383 | }
|
---|
384 |
|
---|
385 | private float computeFPR(ChangePoint cp)
|
---|
386 | {
|
---|
387 | return (float)cp.FP / (cp.FP + cp.TN);
|
---|
388 | }
|
---|
389 |
|
---|
390 | private void computeRoC()
|
---|
391 | {
|
---|
392 | _rocCurve = new List<CurvePoint>();
|
---|
393 | _rocCurve.Add(new CurvePoint(0, 0));
|
---|
394 | float tpr = computeTPR(_changes[0]);
|
---|
395 | float fpr = computeFPR(_changes[0]);
|
---|
396 | _rocCurve.Add(new CurvePoint(fpr, tpr));
|
---|
397 | _auc = 0;
|
---|
398 | for (int i = 1; i < _changes.Count; i++)
|
---|
399 | {
|
---|
400 | float newTPR = computeTPR(_changes[i]);
|
---|
401 | float newFPR = computeFPR(_changes[i]);
|
---|
402 | if (_changes[i].TP > _changes[i - 1].TP)
|
---|
403 | {
|
---|
404 | _auc += tpr * (newFPR - fpr) + .5 * (newTPR - tpr) * (newFPR - fpr);
|
---|
405 | tpr = newTPR;
|
---|
406 | fpr = newFPR;
|
---|
407 | _rocCurve.Add(new CurvePoint(fpr, tpr));
|
---|
408 | }
|
---|
409 | }
|
---|
410 | _rocCurve.Add(new CurvePoint(1, 1));
|
---|
411 | _auc += tpr * (1 - fpr) + .5 * (1 - tpr) * (1 - fpr);
|
---|
412 | }
|
---|
413 |
|
---|
414 | }
|
---|
415 | }
|
---|