[1806] | 1 | /*
|
---|
| 2 | * SVM.NET Library
|
---|
| 3 | * Copyright (C) 2008 Matthew Johnson
|
---|
| 4 | *
|
---|
| 5 | * This program is free software: you can redistribute it and/or modify
|
---|
| 6 | * it under the terms of the GNU General Public License as published by
|
---|
| 7 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 8 | * (at your option) any later version.
|
---|
| 9 | *
|
---|
| 10 | * This program is distributed in the hope that it will be useful,
|
---|
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | * GNU General Public License for more details.
|
---|
| 14 | *
|
---|
| 15 | * You should have received a copy of the GNU General Public License
|
---|
| 16 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 17 | */
|
---|
| 18 |
|
---|
| 19 |
|
---|
| 20 | using System;
|
---|
| 21 | using System.Collections.Generic;
|
---|
| 22 | using System.IO;
|
---|
| 23 |
|
---|
| 24 | namespace SVM
|
---|
| 25 | {
|
---|
| 26 | /// <remarks>
|
---|
| 27 | /// This class contains routines which perform parameter selection for a model which uses C-SVC and
|
---|
| 28 | /// an RBF kernel.
|
---|
| 29 | /// </remarks>
|
---|
| 30 | public static class ParameterSelection
|
---|
| 31 | {
|
---|
| 32 | /// <summary>
|
---|
| 33 | /// Default number of times to divide the data.
|
---|
| 34 | /// </summary>
|
---|
| 35 | public const int NFOLD = 5;
|
---|
| 36 | /// <summary>
|
---|
| 37 | /// Default minimum power of 2 for the C value (-5)
|
---|
| 38 | /// </summary>
|
---|
| 39 | public const int MIN_C = -5;
|
---|
| 40 | /// <summary>
|
---|
| 41 | /// Default maximum power of 2 for the C value (15)
|
---|
| 42 | /// </summary>
|
---|
| 43 | public const int MAX_C = 15;
|
---|
| 44 | /// <summary>
|
---|
| 45 | /// Default power iteration step for the C value (2)
|
---|
| 46 | /// </summary>
|
---|
| 47 | public const int C_STEP = 2;
|
---|
| 48 | /// <summary>
|
---|
| 49 | /// Default minimum power of 2 for the Gamma value (-15)
|
---|
| 50 | /// </summary>
|
---|
| 51 | public const int MIN_G = -15;
|
---|
| 52 | /// <summary>
|
---|
| 53 | /// Default maximum power of 2 for the Gamma Value (3)
|
---|
| 54 | /// </summary>
|
---|
| 55 | public const int MAX_G = 3;
|
---|
| 56 | /// <summary>
|
---|
| 57 | /// Default power iteration step for the Gamma value (2)
|
---|
| 58 | /// </summary>
|
---|
| 59 | public const int G_STEP = 2;
|
---|
| 60 |
|
---|
| 61 | /// <summary>
|
---|
| 62 | /// Returns a logarithmic list of values from minimum power of 2 to the maximum power of 2 using the provided iteration size.
|
---|
| 63 | /// </summary>
|
---|
| 64 | /// <param name="minPower">The minimum power of 2</param>
|
---|
| 65 | /// <param name="maxPower">The maximum power of 2</param>
|
---|
| 66 | /// <param name="iteration">The iteration size to use in powers</param>
|
---|
| 67 | /// <returns></returns>
|
---|
| 68 | public static List<double> GetList(double minPower, double maxPower, double iteration)
|
---|
| 69 | {
|
---|
| 70 | List<double> list = new List<double>();
|
---|
| 71 | for (double d = minPower; d <= maxPower; d += iteration)
|
---|
| 72 | list.Add(Math.Pow(2, d));
|
---|
| 73 | return list;
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 | /// <summary>
|
---|
| 77 | /// Performs a Grid parameter selection, trying all possible combinations of the two lists and returning the
|
---|
| 78 | /// combination which performed best. The default ranges of C and Gamma values are used. Use this method if there is no validation data available, and it will
|
---|
| 79 | /// divide it 5 times to allow 5-fold validation (training on 4/5 and validating on 1/5, 5 times).
|
---|
| 80 | /// </summary>
|
---|
| 81 | /// <param name="problem">The training data</param>
|
---|
| 82 | /// <param name="parameters">The parameters to use when optimizing</param>
|
---|
| 83 | /// <param name="outputFile">Output file for the parameter results.</param>
|
---|
| 84 | /// <param name="C">The optimal C value will be put into this variable</param>
|
---|
| 85 | /// <param name="Gamma">The optimal Gamma value will be put into this variable</param>
|
---|
| 86 | public static void Grid(
|
---|
| 87 | Problem problem,
|
---|
| 88 | Parameter parameters,
|
---|
| 89 | string outputFile,
|
---|
| 90 | out double C,
|
---|
| 91 | out double Gamma)
|
---|
| 92 | {
|
---|
| 93 | Grid(problem, parameters, GetList(MIN_C, MAX_C, C_STEP), GetList(MIN_G, MAX_G, G_STEP), outputFile, NFOLD, out C, out Gamma);
|
---|
| 94 | }
|
---|
| 95 | /// <summary>
|
---|
| 96 | /// Performs a Grid parameter selection, trying all possible combinations of the two lists and returning the
|
---|
| 97 | /// combination which performed best. Use this method if there is no validation data available, and it will
|
---|
| 98 | /// divide it 5 times to allow 5-fold validation (training on 4/5 and validating on 1/5, 5 times).
|
---|
| 99 | /// </summary>
|
---|
| 100 | /// <param name="problem">The training data</param>
|
---|
| 101 | /// <param name="parameters">The parameters to use when optimizing</param>
|
---|
| 102 | /// <param name="CValues">The set of C values to use</param>
|
---|
| 103 | /// <param name="GammaValues">The set of Gamma values to use</param>
|
---|
| 104 | /// <param name="outputFile">Output file for the parameter results.</param>
|
---|
| 105 | /// <param name="C">The optimal C value will be put into this variable</param>
|
---|
| 106 | /// <param name="Gamma">The optimal Gamma value will be put into this variable</param>
|
---|
| 107 | public static void Grid(
|
---|
| 108 | Problem problem,
|
---|
| 109 | Parameter parameters,
|
---|
| 110 | List<double> CValues,
|
---|
| 111 | List<double> GammaValues,
|
---|
| 112 | string outputFile,
|
---|
| 113 | out double C,
|
---|
| 114 | out double Gamma)
|
---|
| 115 | {
|
---|
| 116 | Grid(problem, parameters, CValues, GammaValues, outputFile, NFOLD, out C, out Gamma);
|
---|
| 117 | }
|
---|
| 118 | /// <summary>
|
---|
| 119 | /// Performs a Grid parameter selection, trying all possible combinations of the two lists and returning the
|
---|
| 120 | /// combination which performed best. Use this method if validation data isn't available, as it will
|
---|
| 121 | /// divide the training data and train on a portion of it and test on the rest.
|
---|
| 122 | /// </summary>
|
---|
| 123 | /// <param name="problem">The training data</param>
|
---|
| 124 | /// <param name="parameters">The parameters to use when optimizing</param>
|
---|
| 125 | /// <param name="CValues">The set of C values to use</param>
|
---|
| 126 | /// <param name="GammaValues">The set of Gamma values to use</param>
|
---|
| 127 | /// <param name="outputFile">Output file for the parameter results.</param>
|
---|
| 128 | /// <param name="nrfold">The number of times the data should be divided for validation</param>
|
---|
| 129 | /// <param name="C">The optimal C value will be placed in this variable</param>
|
---|
| 130 | /// <param name="Gamma">The optimal Gamma value will be placed in this variable</param>
|
---|
| 131 | public static void Grid(
|
---|
| 132 | Problem problem,
|
---|
| 133 | Parameter parameters,
|
---|
| 134 | List<double> CValues,
|
---|
| 135 | List<double> GammaValues,
|
---|
| 136 | string outputFile,
|
---|
| 137 | int nrfold,
|
---|
| 138 | out double C,
|
---|
| 139 | out double Gamma)
|
---|
| 140 | {
|
---|
| 141 | C = 0;
|
---|
| 142 | Gamma = 0;
|
---|
| 143 | double crossValidation = double.MinValue;
|
---|
| 144 | StreamWriter output = new StreamWriter("graph.txt");
|
---|
| 145 | for(int i=0; i<CValues.Count; i++)
|
---|
| 146 | for (int j = 0; j < GammaValues.Count; j++)
|
---|
| 147 | {
|
---|
| 148 | parameters.C = CValues[i];
|
---|
| 149 | parameters.Gamma = GammaValues[j];
|
---|
| 150 | double test = Training.PerformCrossValidation(problem, parameters, nrfold);
|
---|
| 151 | Console.Write("{0} {1} {2}", parameters.C, parameters.Gamma, test);
|
---|
| 152 | output.WriteLine("{0} {1} {2}", parameters.C, parameters.Gamma, test);
|
---|
| 153 | if (test > crossValidation)
|
---|
| 154 | {
|
---|
| 155 | C = parameters.C;
|
---|
| 156 | Gamma = parameters.Gamma;
|
---|
| 157 | crossValidation = test;
|
---|
| 158 | Console.WriteLine(" New Maximum!");
|
---|
| 159 | }
|
---|
| 160 | else Console.WriteLine();
|
---|
| 161 | }
|
---|
| 162 | output.Close();
|
---|
| 163 | }
|
---|
| 164 | /// <summary>
|
---|
| 165 | /// Performs a Grid parameter selection, trying all possible combinations of the two lists and returning the
|
---|
| 166 | /// combination which performed best. Uses the default values of C and Gamma.
|
---|
| 167 | /// </summary>
|
---|
| 168 | /// <param name="problem">The training data</param>
|
---|
| 169 | /// <param name="validation">The validation data</param>
|
---|
| 170 | /// <param name="parameters">The parameters to use when optimizing</param>
|
---|
| 171 | /// <param name="outputFile">The output file for the parameter results</param>
|
---|
| 172 | /// <param name="C">The optimal C value will be placed in this variable</param>
|
---|
| 173 | /// <param name="Gamma">The optimal Gamma value will be placed in this variable</param>
|
---|
| 174 | public static void Grid(
|
---|
| 175 | Problem problem,
|
---|
| 176 | Problem validation,
|
---|
| 177 | Parameter parameters,
|
---|
| 178 | string outputFile,
|
---|
| 179 | out double C,
|
---|
| 180 | out double Gamma)
|
---|
| 181 | {
|
---|
| 182 | Grid(problem, validation, parameters, GetList(MIN_C, MAX_C, C_STEP), GetList(MIN_G, MAX_G, G_STEP), outputFile, out C, out Gamma);
|
---|
| 183 | }
|
---|
| 184 | /// <summary>
|
---|
| 185 | /// Performs a Grid parameter selection, trying all possible combinations of the two lists and returning the
|
---|
| 186 | /// combination which performed best.
|
---|
| 187 | /// </summary>
|
---|
| 188 | /// <param name="problem">The training data</param>
|
---|
| 189 | /// <param name="validation">The validation data</param>
|
---|
| 190 | /// <param name="parameters">The parameters to use when optimizing</param>
|
---|
| 191 | /// <param name="CValues">The C values to use</param>
|
---|
| 192 | /// <param name="GammaValues">The Gamma values to use</param>
|
---|
| 193 | /// <param name="outputFile">The output file for the parameter results</param>
|
---|
| 194 | /// <param name="C">The optimal C value will be placed in this variable</param>
|
---|
| 195 | /// <param name="Gamma">The optimal Gamma value will be placed in this variable</param>
|
---|
| 196 | public static void Grid(
|
---|
| 197 | Problem problem,
|
---|
| 198 | Problem validation,
|
---|
| 199 | Parameter parameters,
|
---|
| 200 | List<double> CValues,
|
---|
| 201 | List<double> GammaValues,
|
---|
| 202 | string outputFile,
|
---|
| 203 | out double C,
|
---|
| 204 | out double Gamma)
|
---|
| 205 | {
|
---|
| 206 | C = 0;
|
---|
| 207 | Gamma = 0;
|
---|
| 208 | double maxScore = double.MinValue;
|
---|
| 209 | StreamWriter output = new StreamWriter(outputFile);
|
---|
| 210 | for (int i = 0; i < CValues.Count; i++)
|
---|
| 211 | for (int j = 0; j < GammaValues.Count; j++)
|
---|
| 212 | {
|
---|
| 213 | parameters.C = CValues[i];
|
---|
| 214 | parameters.Gamma = GammaValues[j];
|
---|
| 215 | Model model = Training.Train(problem, parameters);
|
---|
| 216 | double test = Prediction.Predict(validation, "tmp.txt", model, false);
|
---|
| 217 | Console.Write("{0} {1} {2}", parameters.C, parameters.Gamma, test);
|
---|
| 218 | output.WriteLine("{0} {1} {2}", parameters.C, parameters.Gamma, test);
|
---|
| 219 | if (test > maxScore)
|
---|
| 220 | {
|
---|
| 221 | C = parameters.C;
|
---|
| 222 | Gamma = parameters.Gamma;
|
---|
| 223 | maxScore = test;
|
---|
| 224 | Console.WriteLine(" New Maximum!");
|
---|
| 225 | }
|
---|
| 226 | else Console.WriteLine();
|
---|
| 227 | }
|
---|
| 228 | output.Close();
|
---|
| 229 | }
|
---|
| 230 | }
|
---|
| 231 | }
|
---|