[1806] | 1 | /*
|
---|
| 2 | * SVM.NET Library
|
---|
| 3 | * Copyright (C) 2008 Matthew Johnson
|
---|
| 4 | *
|
---|
| 5 | * This program is free software: you can redistribute it and/or modify
|
---|
| 6 | * it under the terms of the GNU General Public License as published by
|
---|
| 7 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 8 | * (at your option) any later version.
|
---|
| 9 | *
|
---|
| 10 | * This program is distributed in the hope that it will be useful,
|
---|
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | * GNU General Public License for more details.
|
---|
| 14 | *
|
---|
| 15 | * You should have received a copy of the GNU General Public License
|
---|
| 16 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 17 | */
|
---|
| 18 |
|
---|
| 19 |
|
---|
| 20 | using System;
|
---|
| 21 |
|
---|
| 22 | namespace SVM
|
---|
| 23 | {
|
---|
| 24 | /// <remarks>
|
---|
| 25 | /// Contains all of the types of SVM this library can model.
|
---|
| 26 | /// </remarks>
|
---|
| 27 | public enum SvmType {
|
---|
| 28 | /// <summary>
|
---|
| 29 | /// C-SVC.
|
---|
| 30 | /// </summary>
|
---|
| 31 | C_SVC,
|
---|
| 32 | /// <summary>
|
---|
| 33 | /// nu-SVC.
|
---|
| 34 | /// </summary>
|
---|
| 35 | NU_SVC,
|
---|
| 36 | /// <summary>
|
---|
| 37 | /// one-class SVM
|
---|
| 38 | /// </summary>
|
---|
| 39 | ONE_CLASS,
|
---|
| 40 | /// <summary>
|
---|
| 41 | /// epsilon-SVR
|
---|
| 42 | /// </summary>
|
---|
| 43 | EPSILON_SVR,
|
---|
| 44 | /// <summary>
|
---|
| 45 | /// nu-SVR
|
---|
| 46 | /// </summary>
|
---|
| 47 | NU_SVR
|
---|
| 48 | };
|
---|
| 49 | /// <remarks>
|
---|
| 50 | /// Contains the various kernel types this library can use.
|
---|
| 51 | /// </remarks>
|
---|
| 52 | public enum KernelType {
|
---|
| 53 | /// <summary>
|
---|
| 54 | /// Linear: u'*v
|
---|
| 55 | /// </summary>
|
---|
| 56 | LINEAR,
|
---|
| 57 | /// <summary>
|
---|
| 58 | /// Polynomial: (gamma*u'*v + coef0)^degree
|
---|
| 59 | /// </summary>
|
---|
| 60 | POLY,
|
---|
| 61 | /// <summary>
|
---|
| 62 | /// Radial basis function: exp(-gamma*|u-v|^2)
|
---|
| 63 | /// </summary>
|
---|
| 64 | RBF,
|
---|
| 65 | /// <summary>
|
---|
| 66 | /// Sigmoid: tanh(gamma*u'*v + coef0)
|
---|
| 67 | /// </summary>
|
---|
| 68 | SIGMOID,
|
---|
| 69 | /// <summary>
|
---|
| 70 | /// Precomputed kernel
|
---|
| 71 | /// </summary>
|
---|
| 72 | PRECOMPUTED,
|
---|
| 73 | };
|
---|
| 74 |
|
---|
| 75 | /// <remarks>
|
---|
| 76 | /// This class contains the various parameters which can affect the way in which an SVM
|
---|
| 77 | /// is learned. Unless you know what you are doing, chances are you are best off using
|
---|
| 78 | /// the default values.
|
---|
| 79 | /// </remarks>
|
---|
| 80 | [Serializable]
|
---|
| 81 | public class Parameter : ICloneable
|
---|
| 82 | {
|
---|
| 83 | private SvmType _svmType;
|
---|
| 84 | private KernelType _kernelType;
|
---|
| 85 | private int _degree;
|
---|
| 86 | private double _gamma;
|
---|
| 87 | private double _coef0;
|
---|
| 88 |
|
---|
| 89 | private double _cacheSize;
|
---|
| 90 | private double _C;
|
---|
| 91 | private double _eps;
|
---|
| 92 |
|
---|
| 93 | private int _weightCount;
|
---|
| 94 | private int[] _weightLabels;
|
---|
| 95 | private double[] _weights;
|
---|
| 96 | private double _nu;
|
---|
| 97 | private double _p;
|
---|
| 98 | private bool _shrinking;
|
---|
| 99 | private bool _probability;
|
---|
| 100 |
|
---|
| 101 | /// <summary>
|
---|
| 102 | /// Default Constructor. Gives good default values to all parameters.
|
---|
| 103 | /// </summary>
|
---|
| 104 | public Parameter()
|
---|
| 105 | {
|
---|
| 106 | _svmType = SvmType.C_SVC;
|
---|
| 107 | _kernelType = KernelType.RBF;
|
---|
| 108 | _degree = 3;
|
---|
| 109 | _gamma = 0; // 1/k
|
---|
| 110 | _coef0 = 0;
|
---|
| 111 | _nu = 0.5;
|
---|
| 112 | _cacheSize = 40;
|
---|
| 113 | _C = 1;
|
---|
| 114 | _eps = 1e-3;
|
---|
| 115 | _p = 0.1;
|
---|
| 116 | _shrinking = true;
|
---|
| 117 | _probability = false;
|
---|
| 118 | _weightCount = 0;
|
---|
| 119 | _weightLabels = new int[0];
|
---|
| 120 | _weights = new double[0];
|
---|
| 121 | }
|
---|
| 122 |
|
---|
| 123 | /// <summary>
|
---|
| 124 | /// Type of SVM (default C-SVC)
|
---|
| 125 | /// </summary>
|
---|
| 126 | public SvmType SvmType
|
---|
| 127 | {
|
---|
| 128 | get
|
---|
| 129 | {
|
---|
| 130 | return _svmType;
|
---|
| 131 | }
|
---|
| 132 | set
|
---|
| 133 | {
|
---|
| 134 | _svmType = value;
|
---|
| 135 | }
|
---|
| 136 | }
|
---|
| 137 | /// <summary>
|
---|
| 138 | /// Type of kernel function (default Polynomial)
|
---|
| 139 | /// </summary>
|
---|
| 140 | public KernelType KernelType
|
---|
| 141 | {
|
---|
| 142 | get
|
---|
| 143 | {
|
---|
| 144 | return _kernelType;
|
---|
| 145 | }
|
---|
| 146 | set
|
---|
| 147 | {
|
---|
| 148 | _kernelType = value;
|
---|
| 149 | }
|
---|
| 150 | }
|
---|
| 151 | /// <summary>
|
---|
| 152 | /// Degree in kernel function (default 3).
|
---|
| 153 | /// </summary>
|
---|
| 154 | public int Degree
|
---|
| 155 | {
|
---|
| 156 | get
|
---|
| 157 | {
|
---|
| 158 | return _degree;
|
---|
| 159 | }
|
---|
| 160 | set
|
---|
| 161 | {
|
---|
| 162 | _degree = value;
|
---|
| 163 | }
|
---|
| 164 | }
|
---|
| 165 | /// <summary>
|
---|
| 166 | /// Gamma in kernel function (default 1/k)
|
---|
| 167 | /// </summary>
|
---|
| 168 | public double Gamma
|
---|
| 169 | {
|
---|
| 170 | get
|
---|
| 171 | {
|
---|
| 172 | return _gamma;
|
---|
| 173 | }
|
---|
| 174 | set
|
---|
| 175 | {
|
---|
| 176 | _gamma = value;
|
---|
| 177 | }
|
---|
| 178 | }
|
---|
| 179 | /// <summary>
|
---|
| 180 | /// Zeroeth coefficient in kernel function (default 0)
|
---|
| 181 | /// </summary>
|
---|
| 182 | public double Coefficient0
|
---|
| 183 | {
|
---|
| 184 | get
|
---|
| 185 | {
|
---|
| 186 | return _coef0;
|
---|
| 187 | }
|
---|
| 188 | set
|
---|
| 189 | {
|
---|
| 190 | _coef0 = value;
|
---|
| 191 | }
|
---|
| 192 | }
|
---|
| 193 |
|
---|
| 194 | /// <summary>
|
---|
| 195 | /// Cache memory size in MB (default 100)
|
---|
| 196 | /// </summary>
|
---|
| 197 | public double CacheSize
|
---|
| 198 | {
|
---|
| 199 | get
|
---|
| 200 | {
|
---|
| 201 | return _cacheSize;
|
---|
| 202 | }
|
---|
| 203 | set
|
---|
| 204 | {
|
---|
| 205 | _cacheSize = value;
|
---|
| 206 | }
|
---|
| 207 | }
|
---|
| 208 | /// <summary>
|
---|
| 209 | /// Tolerance of termination criterion (default 0.001)
|
---|
| 210 | /// </summary>
|
---|
| 211 | public double EPS
|
---|
| 212 | {
|
---|
| 213 | get
|
---|
| 214 | {
|
---|
| 215 | return _eps;
|
---|
| 216 | }
|
---|
| 217 | set
|
---|
| 218 | {
|
---|
| 219 | _eps = value;
|
---|
| 220 | }
|
---|
| 221 | }
|
---|
| 222 | /// <summary>
|
---|
| 223 | /// The parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)
|
---|
| 224 | /// </summary>
|
---|
| 225 | public double C
|
---|
| 226 | {
|
---|
| 227 | get
|
---|
| 228 | {
|
---|
| 229 | return _C;
|
---|
| 230 | }
|
---|
| 231 | set
|
---|
| 232 | {
|
---|
| 233 | _C = value;
|
---|
| 234 | }
|
---|
| 235 | }
|
---|
| 236 | /// <summary>
|
---|
| 237 | /// Number of weights.
|
---|
| 238 | /// </summary>
|
---|
| 239 | public int WeightCount
|
---|
| 240 | {
|
---|
| 241 | get
|
---|
| 242 | {
|
---|
| 243 | return _weightCount;
|
---|
| 244 | }
|
---|
| 245 | set
|
---|
| 246 | {
|
---|
| 247 | _weightCount = value;
|
---|
| 248 | }
|
---|
| 249 | }
|
---|
| 250 | /// <summary>
|
---|
| 251 | /// Array of indicies corresponding to the Weights array (for C-SVC)
|
---|
| 252 | /// </summary>
|
---|
| 253 | public int[] WeightLabels
|
---|
| 254 | {
|
---|
| 255 | get
|
---|
| 256 | {
|
---|
| 257 | return _weightLabels;
|
---|
| 258 | }
|
---|
| 259 | set
|
---|
| 260 | {
|
---|
| 261 | _weightLabels = value;
|
---|
| 262 | }
|
---|
| 263 | }
|
---|
| 264 | /// <summary>
|
---|
| 265 | /// The parameter C of class i to weight*C in C-SVC (default 1)
|
---|
| 266 | /// </summary>
|
---|
| 267 | public double[] Weights
|
---|
| 268 | {
|
---|
| 269 | get
|
---|
| 270 | {
|
---|
| 271 | return _weights;
|
---|
| 272 | }
|
---|
| 273 | set
|
---|
| 274 | {
|
---|
| 275 | _weights = value;
|
---|
| 276 | }
|
---|
| 277 | }
|
---|
| 278 | /// <summary>
|
---|
| 279 | /// The parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)
|
---|
| 280 | /// </summary>
|
---|
| 281 | public double Nu
|
---|
| 282 | {
|
---|
| 283 | get
|
---|
| 284 | {
|
---|
| 285 | return _nu;
|
---|
| 286 | }
|
---|
| 287 | set
|
---|
| 288 | {
|
---|
| 289 | _nu = value;
|
---|
| 290 | }
|
---|
| 291 | }
|
---|
| 292 | /// <summary>
|
---|
| 293 | /// The epsilon in loss function of epsilon-SVR (default 0.1)
|
---|
| 294 | /// </summary>
|
---|
| 295 | public double P
|
---|
| 296 | {
|
---|
| 297 | get
|
---|
| 298 | {
|
---|
| 299 | return _p;
|
---|
| 300 | }
|
---|
| 301 | set
|
---|
| 302 | {
|
---|
| 303 | _p = value;
|
---|
| 304 | }
|
---|
| 305 | }
|
---|
| 306 | /// <summary>
|
---|
| 307 | /// Whether to use the shrinking heuristics, (default True)
|
---|
| 308 | /// </summary>
|
---|
| 309 | public bool Shrinking
|
---|
| 310 | {
|
---|
| 311 | get
|
---|
| 312 | {
|
---|
| 313 | return _shrinking;
|
---|
| 314 | }
|
---|
| 315 | set
|
---|
| 316 | {
|
---|
| 317 | _shrinking = value;
|
---|
| 318 | }
|
---|
| 319 | }
|
---|
| 320 | /// <summary>
|
---|
| 321 | /// Whether to train an SVC or SVR model for probability estimates, (default False)
|
---|
| 322 | /// </summary>
|
---|
| 323 | public bool Probability
|
---|
| 324 | {
|
---|
| 325 | get
|
---|
| 326 | {
|
---|
| 327 | return _probability;
|
---|
| 328 | }
|
---|
| 329 | set
|
---|
| 330 | {
|
---|
| 331 | _probability = value;
|
---|
| 332 | }
|
---|
| 333 | }
|
---|
| 334 |
|
---|
| 335 |
|
---|
| 336 | #region ICloneable Members
|
---|
| 337 | /// <summary>
|
---|
| 338 | /// Creates a memberwise clone of this parameters object.
|
---|
| 339 | /// </summary>
|
---|
| 340 | /// <returns>The clone (as type Parameter)</returns>
|
---|
| 341 | public object Clone()
|
---|
| 342 | {
|
---|
| 343 | return base.MemberwiseClone();
|
---|
| 344 | }
|
---|
| 345 |
|
---|
| 346 | #endregion
|
---|
| 347 | }
|
---|
| 348 | } |
---|