[1806] | 1 | /*
|
---|
| 2 | * SVM.NET Library
|
---|
| 3 | * Copyright (C) 2008 Matthew Johnson
|
---|
| 4 | *
|
---|
| 5 | * This program is free software: you can redistribute it and/or modify
|
---|
| 6 | * it under the terms of the GNU General Public License as published by
|
---|
| 7 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 8 | * (at your option) any later version.
|
---|
| 9 | *
|
---|
| 10 | * This program is distributed in the hope that it will be useful,
|
---|
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | * GNU General Public License for more details.
|
---|
| 14 | *
|
---|
| 15 | * You should have received a copy of the GNU General Public License
|
---|
| 16 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 17 | */
|
---|
| 18 |
|
---|
| 19 |
|
---|
| 20 | using System;
|
---|
| 21 | using System.Collections.Generic;
|
---|
| 22 | using System.IO;
|
---|
| 23 |
|
---|
| 24 | namespace SVM
|
---|
| 25 | {
|
---|
| 26 | /// <remarks>
|
---|
| 27 | /// A transform which learns the mean and variance of a sample set and uses these to transform new data
|
---|
| 28 | /// so that it has zero mean and unit variance.
|
---|
| 29 | /// </remarks>
|
---|
| 30 | public class GaussianTransform : IRangeTransform
|
---|
| 31 | {
|
---|
| 32 | private List<Node[]> _samples;
|
---|
| 33 | private int _maxIndex;
|
---|
| 34 |
|
---|
| 35 | private double[] _means;
|
---|
| 36 | private double[] _stddevs;
|
---|
| 37 |
|
---|
| 38 | /// <summary>
|
---|
| 39 | /// Constructor.
|
---|
| 40 | /// </summary>
|
---|
| 41 | /// <param name="maxIndex">The maximum index of the vectors to be transformed</param>
|
---|
| 42 | public GaussianTransform(int maxIndex)
|
---|
| 43 | {
|
---|
| 44 | _samples = new List<Node[]>();
|
---|
| 45 | }
|
---|
| 46 | private GaussianTransform(double[] means, double[] stddevs, int maxIndex)
|
---|
| 47 | {
|
---|
| 48 | _means = means;
|
---|
| 49 | _stddevs = stddevs;
|
---|
| 50 | _maxIndex = maxIndex;
|
---|
| 51 | }
|
---|
| 52 |
|
---|
| 53 | /// <summary>
|
---|
| 54 | /// Adds a sample to the data. No computation is performed. The maximum index of the
|
---|
| 55 | /// sample must be less than MaxIndex.
|
---|
| 56 | /// </summary>
|
---|
| 57 | /// <param name="sample">The sample to add</param>
|
---|
| 58 | public void Add(Node[] sample)
|
---|
| 59 | {
|
---|
| 60 | _samples.Add(sample);
|
---|
| 61 | }
|
---|
| 62 |
|
---|
| 63 | /// <summary>
|
---|
| 64 | /// Computes the statistics for the samples which have been obtained so far.
|
---|
| 65 | /// </summary>
|
---|
| 66 | public void ComputeStatistics()
|
---|
| 67 | {
|
---|
| 68 | int[] counts = new int[_maxIndex];
|
---|
| 69 | _means = new double[_maxIndex];
|
---|
| 70 | foreach(Node[] sample in _samples)
|
---|
| 71 | {
|
---|
| 72 | for (int i = 0; i < sample.Length; i++)
|
---|
| 73 | {
|
---|
| 74 | _means[sample[i].Index] += sample[i].Value;
|
---|
| 75 | counts[sample[i].Index]++;
|
---|
| 76 | }
|
---|
| 77 | }
|
---|
| 78 | for (int i = 0; i < _maxIndex; i++)
|
---|
| 79 | {
|
---|
| 80 | if (counts[i] == 0)
|
---|
| 81 | counts[i] = 2;
|
---|
| 82 | _means[i] /= counts[i];
|
---|
| 83 | }
|
---|
| 84 |
|
---|
| 85 | _stddevs = new double[_maxIndex];
|
---|
| 86 | foreach(Node[] sample in _samples)
|
---|
| 87 | {
|
---|
| 88 | for (int i = 0; i < sample.Length; i++)
|
---|
| 89 | {
|
---|
| 90 | double diff = sample[i].Value - _means[sample[i].Index];
|
---|
| 91 | _stddevs[sample[i].Index] += diff * diff;
|
---|
| 92 | }
|
---|
| 93 | }
|
---|
| 94 | for (int i = 0; i < _maxIndex; i++)
|
---|
| 95 | {
|
---|
| 96 | if (_stddevs[i] == 0)
|
---|
| 97 | continue;
|
---|
| 98 | _stddevs[i] /= (counts[i]-1);
|
---|
| 99 | _stddevs[i] = Math.Sqrt(_stddevs[i]);
|
---|
| 100 | }
|
---|
| 101 | }
|
---|
| 102 |
|
---|
| 103 | /// <summary>
|
---|
| 104 | /// Saves the transform to the disk. The samples are not stored, only the
|
---|
| 105 | /// statistics.
|
---|
| 106 | /// </summary>
|
---|
| 107 | /// <param name="stream">The destination stream</param>
|
---|
| 108 | /// <param name="transform">The transform</param>
|
---|
| 109 | public static void Write(Stream stream, GaussianTransform transform)
|
---|
| 110 | {
|
---|
| 111 | StreamWriter output = new StreamWriter(stream);
|
---|
| 112 | output.WriteLine(transform._maxIndex);
|
---|
| 113 | for (int i = 0; i < transform._maxIndex; i++)
|
---|
| 114 | output.WriteLine("{0} {1}", transform._means[i], transform._stddevs[i]);
|
---|
| 115 | output.Flush();
|
---|
| 116 | }
|
---|
| 117 |
|
---|
| 118 | /// <summary>
|
---|
| 119 | /// Reads a GaussianTransform from the provided stream.
|
---|
| 120 | /// </summary>
|
---|
| 121 | /// <param name="stream">The source stream</param>
|
---|
| 122 | /// <returns>The transform</returns>
|
---|
| 123 | public static GaussianTransform Read(Stream stream)
|
---|
| 124 | {
|
---|
| 125 | StreamReader input = new StreamReader(stream);
|
---|
| 126 | int length = int.Parse(input.ReadLine());
|
---|
| 127 | double[] means = new double[length];
|
---|
| 128 | double[] stddevs = new double[length];
|
---|
| 129 | for (int i = 0; i < length; i++)
|
---|
| 130 | {
|
---|
| 131 | string[] parts = input.ReadLine().Split();
|
---|
| 132 | means[i] = double.Parse(parts[0]);
|
---|
| 133 | stddevs[i] = double.Parse(parts[1]);
|
---|
| 134 | }
|
---|
| 135 | return new GaussianTransform(means, stddevs, length);
|
---|
| 136 | }
|
---|
| 137 |
|
---|
| 138 | /// <summary>
|
---|
| 139 | /// Saves the transform to the disk. The samples are not stored, only the
|
---|
| 140 | /// statistics.
|
---|
| 141 | /// </summary>
|
---|
| 142 | /// <param name="filename">The destination filename</param>
|
---|
| 143 | /// <param name="transform">The transform</param>
|
---|
| 144 | public static void Write(string filename, GaussianTransform transform)
|
---|
| 145 | {
|
---|
| 146 | FileStream output = File.Open(filename, FileMode.Create);
|
---|
| 147 | try
|
---|
| 148 | {
|
---|
| 149 | Write(output, transform);
|
---|
| 150 | }
|
---|
| 151 | finally
|
---|
| 152 | {
|
---|
| 153 | output.Close();
|
---|
| 154 | }
|
---|
| 155 | }
|
---|
| 156 |
|
---|
| 157 | /// <summary>
|
---|
| 158 | /// Reads a GaussianTransform from the provided stream.
|
---|
| 159 | /// </summary>
|
---|
| 160 | /// <param name="filename">The source filename</param>
|
---|
| 161 | /// <returns>The transform</returns>
|
---|
| 162 | public static GaussianTransform Read(string filename)
|
---|
| 163 | {
|
---|
| 164 | FileStream input = File.Open(filename, FileMode.Open);
|
---|
| 165 | try
|
---|
| 166 | {
|
---|
| 167 | return Read(input);
|
---|
| 168 | }
|
---|
| 169 | finally
|
---|
| 170 | {
|
---|
| 171 | input.Close();
|
---|
| 172 | }
|
---|
| 173 | }
|
---|
| 174 |
|
---|
| 175 | #region IRangeTransform Members
|
---|
| 176 |
|
---|
| 177 | /// <summary>
|
---|
| 178 | /// Transform the input value using the transform stored for the provided index.
|
---|
| 179 | /// <see cref="ComputeStatistics"/> must be called first, or the transform must
|
---|
| 180 | /// have been read from the disk.
|
---|
| 181 | /// </summary>
|
---|
| 182 | /// <param name="input">Input value</param>
|
---|
| 183 | /// <param name="index">Index of the transform to use</param>
|
---|
| 184 | /// <returns>The transformed value</returns>
|
---|
| 185 | public double Transform(double input, int index)
|
---|
| 186 | {
|
---|
| 187 | if (_stddevs[index] == 0)
|
---|
| 188 | return 0;
|
---|
| 189 | double diff = input - _means[index];
|
---|
| 190 | diff /= _stddevs[index];
|
---|
| 191 | return diff;
|
---|
| 192 | }
|
---|
| 193 | /// <summary>
|
---|
| 194 | /// Transforms the input array. <see cref="ComputeStatistics"/> must be called
|
---|
| 195 | /// first, or the transform must have been read from the disk.
|
---|
| 196 | /// </summary>
|
---|
| 197 | /// <param name="input">The array to transform</param>
|
---|
| 198 | /// <returns>The transformed array</returns>
|
---|
| 199 | public Node[] Transform(Node[] input)
|
---|
| 200 | {
|
---|
| 201 | Node[] output = new Node[input.Length];
|
---|
| 202 | for (int i = 0; i < output.Length; i++)
|
---|
| 203 | {
|
---|
| 204 | int index = input[i].Index;
|
---|
| 205 | double value = input[i].Value;
|
---|
| 206 | output[i] = new Node(index, Transform(value, index));
|
---|
| 207 | }
|
---|
| 208 | return output;
|
---|
| 209 | }
|
---|
| 210 |
|
---|
| 211 | #endregion
|
---|
| 212 | }
|
---|
| 213 | }
|
---|