1 | using System;
|
---|
2 | using System.Text;
|
---|
3 | using System.Collections.Generic;
|
---|
4 | using System.Linq;
|
---|
5 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
6 | using HeuristicLab.Algorithms.GeneticAlgorithm;
|
---|
7 | using HeuristicLab.Problems.ArtificialAnt;
|
---|
8 | using HeuristicLab.Selection;
|
---|
9 | using HeuristicLab.Data;
|
---|
10 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
11 | using HeuristicLab.Persistence.Default.Xml;
|
---|
12 | using HeuristicLab.Optimization;
|
---|
13 | using System.Threading;
|
---|
14 | using HeuristicLab.ParallelEngine;
|
---|
15 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
16 | using HeuristicLab.Problems.DataAnalysis;
|
---|
17 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
18 | using System.IO;
|
---|
19 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Classification;
|
---|
20 | using HeuristicLab.Problems.TravelingSalesman;
|
---|
21 | using HeuristicLab.Encodings.PermutationEncoding;
|
---|
22 | using HeuristicLab.Problems.VehicleRouting;
|
---|
23 | using HeuristicLab.Problems.VehicleRouting.Encodings.Potvin;
|
---|
24 | using HeuristicLab.Problems.VehicleRouting.Encodings;
|
---|
25 | using HeuristicLab.Problems.VehicleRouting.Encodings.General;
|
---|
26 |
|
---|
27 | namespace HeuristicLab_33.Tests {
|
---|
28 | [TestClass]
|
---|
29 | public class GeneticAlgorithmSamplesTest {
|
---|
30 | #region TSP
|
---|
31 | [TestMethod]
|
---|
32 | public void CreateTSPSampleTest() {
|
---|
33 | var ga = CreateTSPSample();
|
---|
34 | XmlGenerator.Serialize(ga, "../../GA_TSP.hl");
|
---|
35 | }
|
---|
36 | [TestMethod]
|
---|
37 | public void RunTSPSampleTest() {
|
---|
38 | var ga = CreateTSPSample();
|
---|
39 | ga.SetSeedRandomly.Value = false;
|
---|
40 | RunAlgorithm(ga);
|
---|
41 | Assert.AreEqual(12332, GetDoubleResult(ga, "BestQuality"));
|
---|
42 | Assert.AreEqual(13123.2, GetDoubleResult(ga, "CurrentAverageQuality"));
|
---|
43 | Assert.AreEqual(14538, GetDoubleResult(ga, "CurrentWorstQuality"));
|
---|
44 | Assert.AreEqual(99100, GetIntResult(ga, "EvaluatedSolutions"));
|
---|
45 | }
|
---|
46 |
|
---|
47 | private GeneticAlgorithm CreateTSPSample() {
|
---|
48 | GeneticAlgorithm ga = new GeneticAlgorithm();
|
---|
49 | #region problem configuration
|
---|
50 | TravelingSalesmanProblem tspProblem = new TravelingSalesmanProblem();
|
---|
51 | // import and configure TSP data
|
---|
52 | string ch130FileName = Path.GetTempFileName() + ".tsp";// for silly parser constraints
|
---|
53 | using (var writer = File.CreateText(ch130FileName)) {
|
---|
54 | writer.Write(HeuristicLab_33.Tests.Properties.Resources.ch130);
|
---|
55 | }
|
---|
56 | string ch130OptTourFileName = Path.GetTempFileName() + ".opt.tour"; // for silly parser constraints
|
---|
57 | using (var writer = File.CreateText(ch130OptTourFileName)) {
|
---|
58 | writer.Write(HeuristicLab_33.Tests.Properties.Resources.ch130_opt);
|
---|
59 | }
|
---|
60 |
|
---|
61 | tspProblem.ImportFromTSPLIB(ch130FileName, ch130OptTourFileName, 6110);
|
---|
62 | tspProblem.Evaluator = new TSPRoundedEuclideanPathEvaluator();
|
---|
63 | tspProblem.SolutionCreator = new RandomPermutationCreator();
|
---|
64 | tspProblem.UseDistanceMatrix.Value = true;
|
---|
65 | tspProblem.Name = "ch130 TSP (imported from TSPLIB)";
|
---|
66 | tspProblem.Description = "130 city problem (Churritz)";
|
---|
67 | #endregion
|
---|
68 | #region algorithm configuration
|
---|
69 | ga.Name = "Genetic Algorithm - TSP";
|
---|
70 | ga.Description = "A genetic algorithm which solves the \"ch130\" traveling salesman problem (imported from TSPLIB)";
|
---|
71 | ga.Problem = tspProblem;
|
---|
72 | ConfigureGeneticAlgorithmParameters<ProportionalSelector, OrderCrossover2, InversionManipulator>(
|
---|
73 | ga, 100, 1, 1000, 0.05);
|
---|
74 |
|
---|
75 | ga.Analyzer.Operators.SetItemCheckedState(ga.Analyzer.Operators
|
---|
76 | .OfType<TSPAlleleFrequencyAnalyzer>()
|
---|
77 | .Single(), false);
|
---|
78 | ga.Analyzer.Operators.SetItemCheckedState(ga.Analyzer.Operators
|
---|
79 | .OfType<TSPPopulationDiversityAnalyzer>()
|
---|
80 | .Single(), false);
|
---|
81 | #endregion
|
---|
82 | return ga;
|
---|
83 | }
|
---|
84 |
|
---|
85 | #endregion
|
---|
86 | #region VRP
|
---|
87 | [TestMethod]
|
---|
88 | public void CreateVRPSampleTest() {
|
---|
89 | var ga = CreateVRPSample();
|
---|
90 | XmlGenerator.Serialize(ga, "../../GA_VRP.hl");
|
---|
91 | }
|
---|
92 |
|
---|
93 | [TestMethod]
|
---|
94 | public void RunVRPSampleTest() {
|
---|
95 | var ga = CreateVRPSample();
|
---|
96 | ga.SetSeedRandomly.Value = false;
|
---|
97 | RunAlgorithm(ga);
|
---|
98 | Assert.AreEqual(1828.9368669428336, GetDoubleResult(ga, "BestQuality"));
|
---|
99 | Assert.AreEqual(1832.7272021720889, GetDoubleResult(ga, "CurrentAverageQuality"));
|
---|
100 | Assert.AreEqual(1929.5220133155044, GetDoubleResult(ga, "CurrentWorstQuality"));
|
---|
101 | Assert.AreEqual(99100, GetIntResult(ga, "EvaluatedSolutions"));
|
---|
102 | }
|
---|
103 |
|
---|
104 | private GeneticAlgorithm CreateVRPSample() {
|
---|
105 | GeneticAlgorithm ga = new GeneticAlgorithm();
|
---|
106 | #region problem configuration
|
---|
107 | VehicleRoutingProblem vrpProblem = new VehicleRoutingProblem();
|
---|
108 | // import and configure VRP data
|
---|
109 | string c101FileName = Path.GetTempFileName();
|
---|
110 | using (var writer = File.CreateText(c101FileName)) {
|
---|
111 | writer.Write(HeuristicLab_33.Tests.Properties.Resources.C101);
|
---|
112 | }
|
---|
113 | // import and configure VRP data
|
---|
114 | string c101BestSolutionFileName = Path.GetTempFileName();
|
---|
115 | using (var writer = File.CreateText(c101BestSolutionFileName)) {
|
---|
116 | writer.Write(HeuristicLab_33.Tests.Properties.Resources.C101_opt);
|
---|
117 | }
|
---|
118 |
|
---|
119 | vrpProblem.ImportFromSolomon(c101FileName);
|
---|
120 | vrpProblem.ImportSolution(c101BestSolutionFileName);
|
---|
121 | vrpProblem.Name = "C101 VRP (imported from Solomon)";
|
---|
122 | vrpProblem.Description = "Represents a Vehicle Routing Problem.";
|
---|
123 | vrpProblem.DistanceFactorParameter.Value.Value = 1;
|
---|
124 | vrpProblem.FleetUsageFactorParameter.Value.Value = 100;
|
---|
125 | vrpProblem.OverloadPenaltyParameter.Value.Value = 100;
|
---|
126 | vrpProblem.TardinessPenaltyParameter.Value.Value = 100;
|
---|
127 | vrpProblem.TimeFactorParameter.Value.Value = 0;
|
---|
128 | vrpProblem.Evaluator = new VRPEvaluator();
|
---|
129 | vrpProblem.MaximizationParameter.Value.Value = false;
|
---|
130 | vrpProblem.SolutionCreator = new RandomCreator();
|
---|
131 | vrpProblem.UseDistanceMatrix.Value = true;
|
---|
132 | vrpProblem.Vehicles.Value = 25;
|
---|
133 | #endregion
|
---|
134 | #region algorithm configuration
|
---|
135 | ga.Name = "Genetic Algorithm - VRP";
|
---|
136 | ga.Description = "A genetic algorithm which solves the \"C101\" vehicle routing problem (imported from Solomon)";
|
---|
137 | ga.Problem = vrpProblem;
|
---|
138 | ConfigureGeneticAlgorithmParameters<TournamentSelector, MultiVRPSolutionCrossover, MultiVRPSolutionManipulator>(
|
---|
139 | ga, 100, 1, 1000, 0.05, 3);
|
---|
140 |
|
---|
141 | var xOver = (MultiVRPSolutionCrossover)ga.Crossover;
|
---|
142 | foreach (var op in xOver.Operators) {
|
---|
143 | xOver.Operators.SetItemCheckedState(op, false);
|
---|
144 | }
|
---|
145 | xOver.Operators.SetItemCheckedState(xOver.Operators
|
---|
146 | .OfType<PotvinRouteBasedCrossover>()
|
---|
147 | .Single(), true);
|
---|
148 | xOver.Operators.SetItemCheckedState(xOver.Operators
|
---|
149 | .OfType<PotvinSequenceBasedCrossover>()
|
---|
150 | .Single(), true);
|
---|
151 |
|
---|
152 | var manipulator = (MultiVRPSolutionManipulator)ga.Mutator;
|
---|
153 | foreach (var op in manipulator.Operators) {
|
---|
154 | manipulator.Operators.SetItemCheckedState(op, false);
|
---|
155 | }
|
---|
156 | manipulator.Operators.SetItemCheckedState(manipulator.Operators
|
---|
157 | .OfType<PotvinOneLevelExchangeMainpulator>()
|
---|
158 | .Single(), true);
|
---|
159 | manipulator.Operators.SetItemCheckedState(manipulator.Operators
|
---|
160 | .OfType<PotvinTwoLevelExchangeManipulator>()
|
---|
161 | .Single(), true);
|
---|
162 | #endregion
|
---|
163 | return ga;
|
---|
164 | }
|
---|
165 |
|
---|
166 | #endregion
|
---|
167 | #region ArtificialAnt
|
---|
168 |
|
---|
169 | [TestMethod]
|
---|
170 | public void CreateArtificialAntSampleTest() {
|
---|
171 | var ga = CreateArtificialAntSample();
|
---|
172 | XmlGenerator.Serialize(ga, "../../SGP_SantaFe.hl");
|
---|
173 | }
|
---|
174 |
|
---|
175 | [TestMethod]
|
---|
176 | public void RunArtificialAntSampleTest() {
|
---|
177 | var ga = CreateArtificialAntSample();
|
---|
178 | ga.SetSeedRandomly.Value = false;
|
---|
179 | RunAlgorithm(ga);
|
---|
180 | Assert.AreEqual(89, GetDoubleResult(ga, "BestQuality"));
|
---|
181 | Assert.AreEqual(68.635, GetDoubleResult(ga, "CurrentAverageQuality"));
|
---|
182 | Assert.AreEqual(0, GetDoubleResult(ga, "CurrentWorstQuality"));
|
---|
183 | Assert.AreEqual(50950, GetIntResult(ga, "EvaluatedSolutions"));
|
---|
184 | }
|
---|
185 |
|
---|
186 | public GeneticAlgorithm CreateArtificialAntSample() {
|
---|
187 | GeneticAlgorithm ga = new GeneticAlgorithm();
|
---|
188 | #region problem configuration
|
---|
189 | ArtificialAntProblem antProblem = new ArtificialAntProblem();
|
---|
190 | antProblem.BestKnownQuality.Value = 89;
|
---|
191 | antProblem.MaxExpressionDepth.Value = 10;
|
---|
192 | antProblem.MaxExpressionLength.Value = 100;
|
---|
193 | antProblem.MaxFunctionArguments.Value = 3;
|
---|
194 | antProblem.MaxFunctionDefinitions.Value = 3;
|
---|
195 | antProblem.MaxTimeSteps.Value = 600;
|
---|
196 | #endregion
|
---|
197 | #region algorithm configuration
|
---|
198 | ga.Name = "Genetic Programming - Artificial Ant";
|
---|
199 | ga.Description = "A standard genetic programming algorithm to solve the artificial ant problem (Santa-Fe trail)";
|
---|
200 | ga.Problem = antProblem;
|
---|
201 | ConfigureGeneticAlgorithmParameters<TournamentSelector, SubtreeCrossover, MultiSymbolicExpressionTreeArchitectureManipulator>(
|
---|
202 | ga, 1000, 1, 50, 0.15, 5);
|
---|
203 | var mutator = (MultiSymbolicExpressionTreeArchitectureManipulator)ga.Mutator;
|
---|
204 | mutator.Operators.SetItemCheckedState(mutator.Operators
|
---|
205 | .OfType<FullTreeShaker>()
|
---|
206 | .Single(), false);
|
---|
207 | mutator.Operators.SetItemCheckedState(mutator.Operators
|
---|
208 | .OfType<OnePointShaker>()
|
---|
209 | .Single(), false);
|
---|
210 | mutator.Operators.SetItemCheckedState(mutator.Operators
|
---|
211 | .OfType<ArgumentDeleter>()
|
---|
212 | .Single(), false);
|
---|
213 | mutator.Operators.SetItemCheckedState(mutator.Operators
|
---|
214 | .OfType<SubroutineDeleter>()
|
---|
215 | .Single(), false);
|
---|
216 | #endregion
|
---|
217 | return ga;
|
---|
218 | }
|
---|
219 |
|
---|
220 | #endregion
|
---|
221 | #region symbolic regression
|
---|
222 | [TestMethod]
|
---|
223 | public void CreateSymbolicRegressionSampleTest() {
|
---|
224 | var ga = CreateSymbolicRegressionSample();
|
---|
225 | XmlGenerator.Serialize(ga, "../../SGP_SymbReg.hl");
|
---|
226 | }
|
---|
227 | [TestMethod]
|
---|
228 | public void RunSymbolicRegressionSampleTest() {
|
---|
229 | var ga = CreateSymbolicRegressionSample();
|
---|
230 | ga.SetSeedRandomly.Value = false;
|
---|
231 | RunAlgorithm(ga);
|
---|
232 | Assert.AreEqual(0.82895806566669916, GetDoubleResult(ga, "BestQuality"));
|
---|
233 | Assert.AreEqual(0.50808259256341926, GetDoubleResult(ga, "CurrentAverageQuality"));
|
---|
234 | Assert.AreEqual(0, GetDoubleResult(ga, "CurrentWorstQuality"));
|
---|
235 | Assert.AreEqual(50950, GetIntResult(ga, "EvaluatedSolutions"));
|
---|
236 | }
|
---|
237 |
|
---|
238 | private GeneticAlgorithm CreateSymbolicRegressionSample() {
|
---|
239 | GeneticAlgorithm ga = new GeneticAlgorithm();
|
---|
240 | #region problem configuration
|
---|
241 | SymbolicRegressionSingleObjectiveProblem symbRegProblem = new SymbolicRegressionSingleObjectiveProblem();
|
---|
242 | symbRegProblem.Name = "Tower Symbolic Regression Problem";
|
---|
243 | symbRegProblem.Description = "Tower Dataset (downloaded from: http://vanillamodeling.com/realproblems.html)";
|
---|
244 | // import and configure problem data
|
---|
245 | string filename = Path.GetTempFileName();
|
---|
246 | using (var writer = File.CreateText(filename)) {
|
---|
247 | writer.Write(HeuristicLab_33.Tests.Properties.Resources.TowerData);
|
---|
248 | }
|
---|
249 | var towerProblemData = RegressionProblemData.ImportFromFile(filename);
|
---|
250 | towerProblemData.TargetVariableParameter.Value = towerProblemData.TargetVariableParameter.ValidValues
|
---|
251 | .First(v => v.Value == "towerResponse");
|
---|
252 | towerProblemData.InputVariables.SetItemCheckedState(
|
---|
253 | towerProblemData.InputVariables.Single(x => x.Value == "x1"), true);
|
---|
254 | towerProblemData.InputVariables.SetItemCheckedState(
|
---|
255 | towerProblemData.InputVariables.Single(x => x.Value == "x7"), false);
|
---|
256 | towerProblemData.InputVariables.SetItemCheckedState(
|
---|
257 | towerProblemData.InputVariables.Single(x => x.Value == "x11"), false);
|
---|
258 | towerProblemData.InputVariables.SetItemCheckedState(
|
---|
259 | towerProblemData.InputVariables.Single(x => x.Value == "x16"), false);
|
---|
260 | towerProblemData.InputVariables.SetItemCheckedState(
|
---|
261 | towerProblemData.InputVariables.Single(x => x.Value == "x21"), false);
|
---|
262 | towerProblemData.InputVariables.SetItemCheckedState(
|
---|
263 | towerProblemData.InputVariables.Single(x => x.Value == "x25"), false);
|
---|
264 | towerProblemData.InputVariables.SetItemCheckedState(
|
---|
265 | towerProblemData.InputVariables.Single(x => x.Value == "towerResponse"), false);
|
---|
266 | towerProblemData.TrainingPartition.Start = 0;
|
---|
267 | towerProblemData.TrainingPartition.End = 4000;
|
---|
268 | towerProblemData.TestPartition.Start = 4000;
|
---|
269 | towerProblemData.TestPartition.End = 4999;
|
---|
270 | towerProblemData.Name = "Data imported from towerData.txt";
|
---|
271 | towerProblemData.Description = "Chemical concentration at top of distillation tower, dataset downloaded from: http://vanillamodeling.com/realproblems.html, best R² achieved with nu-SVR = 0.97";
|
---|
272 | symbRegProblem.ProblemData = towerProblemData;
|
---|
273 |
|
---|
274 | // configure grammar
|
---|
275 | var grammar = new TypeCoherentExpressionGrammar();
|
---|
276 | grammar.Symbols.OfType<Sine>().Single().InitialFrequency = 0.0;
|
---|
277 | grammar.Symbols.OfType<Cosine>().Single().InitialFrequency = 0.0;
|
---|
278 | grammar.Symbols.OfType<Tangent>().Single().InitialFrequency = 0.0;
|
---|
279 | grammar.Symbols.OfType<IfThenElse>().Single().InitialFrequency = 0.0;
|
---|
280 | grammar.Symbols.OfType<GreaterThan>().Single().InitialFrequency = 0.0;
|
---|
281 | grammar.Symbols.OfType<LessThan>().Single().InitialFrequency = 0.0;
|
---|
282 | grammar.Symbols.OfType<And>().Single().InitialFrequency = 0.0;
|
---|
283 | grammar.Symbols.OfType<Or>().Single().InitialFrequency = 0.0;
|
---|
284 | grammar.Symbols.OfType<Not>().Single().InitialFrequency = 0.0;
|
---|
285 | grammar.Symbols.OfType<TimeLag>().Single().InitialFrequency = 0.0;
|
---|
286 | grammar.Symbols.OfType<Integral>().Single().InitialFrequency = 0.0;
|
---|
287 | grammar.Symbols.OfType<Derivative>().Single().InitialFrequency = 0.0;
|
---|
288 | grammar.Symbols.OfType<LaggedVariable>().Single().InitialFrequency = 0.0;
|
---|
289 | grammar.Symbols.OfType<VariableCondition>().Single().InitialFrequency = 0.0;
|
---|
290 | var varSymbol = grammar.Symbols.OfType<Variable>().Where(x => !(x is LaggedVariable)).Single();
|
---|
291 | varSymbol.WeightMu = 1.0;
|
---|
292 | varSymbol.WeightSigma = 1.0;
|
---|
293 | varSymbol.WeightManipulatorMu = 0.0;
|
---|
294 | varSymbol.WeightManipulatorSigma = 0.05;
|
---|
295 | varSymbol.MultiplicativeWeightManipulatorSigma = 0.03;
|
---|
296 | var constSymbol = grammar.Symbols.OfType<Constant>().Single();
|
---|
297 | constSymbol.MaxValue = 20;
|
---|
298 | constSymbol.MinValue = -20;
|
---|
299 | constSymbol.ManipulatorMu = 0.0;
|
---|
300 | constSymbol.ManipulatorSigma = 1;
|
---|
301 | constSymbol.MultiplicativeManipulatorSigma = 0.03;
|
---|
302 | symbRegProblem.SymbolicExpressionTreeGrammar = grammar;
|
---|
303 |
|
---|
304 | // configure remaining problem parameters
|
---|
305 | symbRegProblem.BestKnownQuality.Value = 0.97;
|
---|
306 | symbRegProblem.FitnessCalculationPartition.Start = 0;
|
---|
307 | symbRegProblem.FitnessCalculationPartition.End = 2800;
|
---|
308 | symbRegProblem.ValidationPartition.Start = 2800;
|
---|
309 | symbRegProblem.ValidationPartition.End = 4000;
|
---|
310 | symbRegProblem.RelativeNumberOfEvaluatedSamples.Value = 1;
|
---|
311 | symbRegProblem.MaximumSymbolicExpressionTreeLength.Value = 150;
|
---|
312 | symbRegProblem.MaximumSymbolicExpressionTreeDepth.Value = 12;
|
---|
313 | symbRegProblem.MaximumFunctionDefinitions.Value = 0;
|
---|
314 | symbRegProblem.MaximumFunctionArguments.Value = 0;
|
---|
315 |
|
---|
316 | symbRegProblem.EvaluatorParameter.Value = new SymbolicRegressionSingleObjectivePearsonRSquaredEvaluator();
|
---|
317 | #endregion
|
---|
318 | #region algorithm configuration
|
---|
319 | ga.Problem = symbRegProblem;
|
---|
320 | ga.Name = "Genetic Programming - Symbolic Regression";
|
---|
321 | ga.Description = "A standard genetic programming algorithm to solve a symbolic regression problem (tower dataset)";
|
---|
322 | ConfigureGeneticAlgorithmParameters<TournamentSelector, SubtreeCrossover, MultiSymbolicExpressionTreeManipulator>(
|
---|
323 | ga, 1000, 1, 50, 0.15, 5);
|
---|
324 | var mutator = (MultiSymbolicExpressionTreeManipulator)ga.Mutator;
|
---|
325 | mutator.Operators.OfType<FullTreeShaker>().Single().ShakingFactor = 0.1;
|
---|
326 | mutator.Operators.OfType<OnePointShaker>().Single().ShakingFactor = 1.0;
|
---|
327 |
|
---|
328 | ga.Analyzer.Operators.SetItemCheckedState(
|
---|
329 | ga.Analyzer.Operators
|
---|
330 | .OfType<SymbolicRegressionSingleObjectiveOverfittingAnalyzer>()
|
---|
331 | .Single(), false);
|
---|
332 | ga.Analyzer.Operators.SetItemCheckedState(
|
---|
333 | ga.Analyzer.Operators
|
---|
334 | .OfType<SymbolicDataAnalysisAlleleFrequencyAnalyzer>()
|
---|
335 | .First(), false);
|
---|
336 | #endregion
|
---|
337 | return ga;
|
---|
338 | }
|
---|
339 | #endregion
|
---|
340 | #region symbolic classification
|
---|
341 |
|
---|
342 | [TestMethod]
|
---|
343 | public void CreateSymbolicClassificationSampleTest() {
|
---|
344 | var ga = CreateSymbolicClassificationSample();
|
---|
345 | XmlGenerator.Serialize(ga, "../../SGP_SymbClass.hl");
|
---|
346 | }
|
---|
347 |
|
---|
348 | [TestMethod]
|
---|
349 | public void RunSymbolicClassificationSampleTest() {
|
---|
350 | var ga = CreateSymbolicClassificationSample();
|
---|
351 | ga.SetSeedRandomly.Value = false;
|
---|
352 | RunAlgorithm(ga);
|
---|
353 | Assert.AreEqual(0.13607488888377872, GetDoubleResult(ga, "BestQuality"));
|
---|
354 | Assert.AreEqual(2.1634701155600293, GetDoubleResult(ga, "CurrentAverageQuality"));
|
---|
355 | Assert.AreEqual(100.62175156249987, GetDoubleResult(ga, "CurrentWorstQuality"));
|
---|
356 | Assert.AreEqual(100900, GetIntResult(ga, "EvaluatedSolutions"));
|
---|
357 | }
|
---|
358 |
|
---|
359 | private GeneticAlgorithm CreateSymbolicClassificationSample() {
|
---|
360 | GeneticAlgorithm ga = new GeneticAlgorithm();
|
---|
361 | #region problem configuration
|
---|
362 | SymbolicClassificationSingleObjectiveProblem symbClassProblem = new SymbolicClassificationSingleObjectiveProblem();
|
---|
363 | symbClassProblem.Name = "Mammography Classification Problem";
|
---|
364 | symbClassProblem.Description = "Mammography dataset imported from the UCI machine learning repository (http://archive.ics.uci.edu/ml/datasets/Mammographic+Mass)";
|
---|
365 | // import and configure problem data
|
---|
366 | string filename = Path.GetTempFileName();
|
---|
367 | using (var writer = File.CreateText(filename)) {
|
---|
368 | writer.Write(HeuristicLab_33.Tests.Properties.Resources.MammographicMasses);
|
---|
369 | }
|
---|
370 | var mammoData = ClassificationProblemData.ImportFromFile(filename);
|
---|
371 | mammoData.TargetVariableParameter.Value = mammoData.TargetVariableParameter.ValidValues
|
---|
372 | .First(v => v.Value == "Severity");
|
---|
373 | mammoData.InputVariables.SetItemCheckedState(
|
---|
374 | mammoData.InputVariables.Single(x => x.Value == "BI-RADS"), false);
|
---|
375 | mammoData.InputVariables.SetItemCheckedState(
|
---|
376 | mammoData.InputVariables.Single(x => x.Value == "Age"), true);
|
---|
377 | mammoData.InputVariables.SetItemCheckedState(
|
---|
378 | mammoData.InputVariables.Single(x => x.Value == "Shape"), true);
|
---|
379 | mammoData.InputVariables.SetItemCheckedState(
|
---|
380 | mammoData.InputVariables.Single(x => x.Value == "Margin"), true);
|
---|
381 | mammoData.InputVariables.SetItemCheckedState(
|
---|
382 | mammoData.InputVariables.Single(x => x.Value == "Density"), true);
|
---|
383 | mammoData.InputVariables.SetItemCheckedState(
|
---|
384 | mammoData.InputVariables.Single(x => x.Value == "Severity"), false);
|
---|
385 | mammoData.TrainingPartition.Start = 0;
|
---|
386 | mammoData.TrainingPartition.End = 800;
|
---|
387 | mammoData.TestPartition.Start = 800;
|
---|
388 | mammoData.TestPartition.End = 961;
|
---|
389 | mammoData.Name = "Data imported from mammographic_masses.csv";
|
---|
390 | mammoData.Description = "Original dataset: http://archive.ics.uci.edu/ml/datasets/Mammographic+Mass, missing values have been replaced with median values.";
|
---|
391 | symbClassProblem.ProblemData = mammoData;
|
---|
392 |
|
---|
393 | // configure grammar
|
---|
394 | var grammar = new TypeCoherentExpressionGrammar();
|
---|
395 | grammar.Symbols.OfType<Sine>().Single().InitialFrequency = 0.0;
|
---|
396 | grammar.Symbols.OfType<Cosine>().Single().InitialFrequency = 0.0;
|
---|
397 | grammar.Symbols.OfType<Tangent>().Single().InitialFrequency = 0.0;
|
---|
398 | grammar.Symbols.OfType<Power>().Single().InitialFrequency = 0.0;
|
---|
399 | grammar.Symbols.OfType<Root>().Single().InitialFrequency = 0.0;
|
---|
400 | grammar.Symbols.OfType<TimeLag>().Single().InitialFrequency = 0.0;
|
---|
401 | grammar.Symbols.OfType<Integral>().Single().InitialFrequency = 0.0;
|
---|
402 | grammar.Symbols.OfType<Derivative>().Single().InitialFrequency = 0.0;
|
---|
403 | grammar.Symbols.OfType<LaggedVariable>().Single().InitialFrequency = 0.0;
|
---|
404 | grammar.Symbols.OfType<VariableCondition>().Single().InitialFrequency = 0.0;
|
---|
405 | var varSymbol = grammar.Symbols.OfType<Variable>().Where(x => !(x is LaggedVariable)).Single();
|
---|
406 | varSymbol.WeightMu = 1.0;
|
---|
407 | varSymbol.WeightSigma = 1.0;
|
---|
408 | varSymbol.WeightManipulatorMu = 0.0;
|
---|
409 | varSymbol.WeightManipulatorSigma = 0.05;
|
---|
410 | varSymbol.MultiplicativeWeightManipulatorSigma = 0.03;
|
---|
411 | var constSymbol = grammar.Symbols.OfType<Constant>().Single();
|
---|
412 | constSymbol.MaxValue = 20;
|
---|
413 | constSymbol.MinValue = -20;
|
---|
414 | constSymbol.ManipulatorMu = 0.0;
|
---|
415 | constSymbol.ManipulatorSigma = 1;
|
---|
416 | constSymbol.MultiplicativeManipulatorSigma = 0.03;
|
---|
417 | symbClassProblem.SymbolicExpressionTreeGrammar = grammar;
|
---|
418 |
|
---|
419 | // configure remaining problem parameters
|
---|
420 | symbClassProblem.BestKnownQuality.Value = 0.0;
|
---|
421 | symbClassProblem.FitnessCalculationPartition.Start = 0;
|
---|
422 | symbClassProblem.FitnessCalculationPartition.End = 400;
|
---|
423 | symbClassProblem.ValidationPartition.Start = 400;
|
---|
424 | symbClassProblem.ValidationPartition.End = 800;
|
---|
425 | symbClassProblem.RelativeNumberOfEvaluatedSamples.Value = 1;
|
---|
426 | symbClassProblem.MaximumSymbolicExpressionTreeLength.Value = 100;
|
---|
427 | symbClassProblem.MaximumSymbolicExpressionTreeDepth.Value = 10;
|
---|
428 | symbClassProblem.MaximumFunctionDefinitions.Value = 0;
|
---|
429 | symbClassProblem.MaximumFunctionArguments.Value = 0;
|
---|
430 | symbClassProblem.EvaluatorParameter.Value = new SymbolicClassificationSingleObjectiveMeanSquaredErrorEvaluator();
|
---|
431 | #endregion
|
---|
432 | #region algorithm configuration
|
---|
433 | ga.Problem = symbClassProblem;
|
---|
434 | ga.Name = "Genetic Programming - Symbolic Classification";
|
---|
435 | ga.Description = "A standard genetic programming algorithm to solve a classification problem (Mammographic+Mass dataset)";
|
---|
436 | ConfigureGeneticAlgorithmParameters<TournamentSelector, SubtreeCrossover, MultiSymbolicExpressionTreeManipulator>(
|
---|
437 | ga, 1000, 1, 100, 0.15, 5
|
---|
438 | );
|
---|
439 |
|
---|
440 | var mutator = (MultiSymbolicExpressionTreeManipulator)ga.Mutator;
|
---|
441 | mutator.Operators.OfType<FullTreeShaker>().Single().ShakingFactor = 0.1;
|
---|
442 | mutator.Operators.OfType<OnePointShaker>().Single().ShakingFactor = 1.0;
|
---|
443 |
|
---|
444 | ga.Analyzer.Operators.SetItemCheckedState(
|
---|
445 | ga.Analyzer.Operators
|
---|
446 | .OfType<SymbolicClassificationSingleObjectiveOverfittingAnalyzer>()
|
---|
447 | .Single(), false);
|
---|
448 | ga.Analyzer.Operators.SetItemCheckedState(
|
---|
449 | ga.Analyzer.Operators
|
---|
450 | .OfType<SymbolicDataAnalysisAlleleFrequencyAnalyzer>()
|
---|
451 | .First(), false);
|
---|
452 | #endregion
|
---|
453 | return ga;
|
---|
454 | }
|
---|
455 | #endregion
|
---|
456 |
|
---|
457 | private void ConfigureGeneticAlgorithmParameters<S, C, M>(GeneticAlgorithm ga, int popSize, int elites, int maxGens, double mutationRate, int tournGroupSize = 0)
|
---|
458 | where S : ISelector
|
---|
459 | where C : ICrossover
|
---|
460 | where M : IManipulator {
|
---|
461 | ga.Elites.Value = elites;
|
---|
462 | ga.MaximumGenerations.Value = maxGens;
|
---|
463 | ga.MutationProbability.Value = mutationRate;
|
---|
464 | ga.PopulationSize.Value = popSize;
|
---|
465 | ga.Seed.Value = 0;
|
---|
466 | ga.SetSeedRandomly.Value = true;
|
---|
467 | ga.Selector = ga.SelectorParameter.ValidValues
|
---|
468 | .OfType<S>()
|
---|
469 | .Single();
|
---|
470 |
|
---|
471 | ga.Crossover = ga.CrossoverParameter.ValidValues
|
---|
472 | .OfType<C>()
|
---|
473 | .Single();
|
---|
474 |
|
---|
475 | ga.Mutator = ga.MutatorParameter.ValidValues
|
---|
476 | .OfType<M>()
|
---|
477 | .Single();
|
---|
478 |
|
---|
479 | var tSelector = ga.Selector as TournamentSelector;
|
---|
480 | if (tSelector != null) {
|
---|
481 | tSelector.GroupSizeParameter.Value.Value = 5;
|
---|
482 | }
|
---|
483 | ga.Engine = new ParallelEngine();
|
---|
484 | }
|
---|
485 |
|
---|
486 |
|
---|
487 | private void RunAlgorithm(IAlgorithm a) {
|
---|
488 | var trigger = new EventWaitHandle(false, EventResetMode.ManualReset);
|
---|
489 | Exception ex = null;
|
---|
490 | a.Stopped += (src, e) => { trigger.Set(); };
|
---|
491 | a.ExceptionOccurred += (src, e) => { ex = e.Value; };
|
---|
492 | a.Prepare();
|
---|
493 | a.Start();
|
---|
494 | trigger.WaitOne();
|
---|
495 |
|
---|
496 | Assert.AreEqual(ex, null);
|
---|
497 | }
|
---|
498 |
|
---|
499 | private double GetDoubleResult(GeneticAlgorithm ga, string resultName) {
|
---|
500 | return ((DoubleValue)ga.Results[resultName].Value).Value;
|
---|
501 | }
|
---|
502 | private int GetIntResult(GeneticAlgorithm ga, string resultName) {
|
---|
503 | return ((IntValue)ga.Results[resultName].Value).Value;
|
---|
504 | }
|
---|
505 | }
|
---|
506 | }
|
---|