Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Tests/HeuristicLab.Problems.DataAnalysis.Symbolic-3.4/Util.cs @ 8276

Last change on this file since 8276 was 7915, checked in by mkommend, 13 years ago

#1777: Extracted unit tests into a separate solution.

File size: 4.5 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Diagnostics;
25using System.Linq;
26using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
27using HeuristicLab.Problems.DataAnalysis.Symbolic;
28using HeuristicLab.Random;
29namespace HeuristicLab.Problems.DataAnalysis.Symbolic_34.Tests {
30  internal class Util {
31
32    public static void InitTree(ISymbolicExpressionTree tree, MersenneTwister twister, List<string> varNames) {
33      foreach (var node in tree.IterateNodesPostfix()) {
34        if (node is VariableTreeNode) {
35          var varNode = node as VariableTreeNode;
36          varNode.Weight = twister.NextDouble() * 20.0 - 10.0;
37          varNode.VariableName = varNames[twister.Next(varNames.Count)];
38        } else if (node is ConstantTreeNode) {
39          var constantNode = node as ConstantTreeNode;
40          constantNode.Value = twister.NextDouble() * 20.0 - 10.0;
41        }
42      }
43    }
44
45
46    public static ISymbolicExpressionTree[] CreateRandomTrees(MersenneTwister twister, Dataset dataset, ISymbolicExpressionGrammar grammar, int popSize) {
47      return CreateRandomTrees(twister, dataset, grammar, popSize, 1, 200, 3, 3);
48    }
49
50    public static ISymbolicExpressionTree[] CreateRandomTrees(MersenneTwister twister, Dataset dataset, ISymbolicExpressionGrammar grammar,
51      int popSize, int minSize, int maxSize,
52      int maxFunctionDefinitions, int maxFunctionArguments) {
53      foreach (Variable variableSymbol in grammar.Symbols.OfType<Variable>()) {
54        variableSymbol.VariableNames = dataset.VariableNames.Skip(1);
55      }
56      ISymbolicExpressionTree[] randomTrees = new ISymbolicExpressionTree[popSize];
57      for (int i = 0; i < randomTrees.Length; i++) {
58        randomTrees[i] = ProbabilisticTreeCreator.Create(twister, grammar, maxSize, 10);
59      }
60      return randomTrees;
61    }
62
63
64    public static Dataset CreateRandomDataset(MersenneTwister twister, int rows, int columns) {
65      double[,] data = new double[rows, columns];
66      for (int i = 0; i < rows; i++) {
67        for (int j = 0; j < columns; j++) {
68          data[i, j] = twister.NextDouble() * 2.0 - 1.0;
69        }
70      }
71      IEnumerable<string> variableNames = new string[] { "y" }.Concat(Enumerable.Range(0, columns - 1).Select(x => "x" + x.ToString()));
72      Dataset ds = new Dataset(variableNames, data);
73      return ds;
74    }
75
76    public static double NodesPerSecond(long nNodes, Stopwatch watch) {
77      return nNodes / (watch.ElapsedMilliseconds / 1000.0);
78    }
79
80    public static double CalculateEvaluatedNodesPerSec(ISymbolicExpressionTree[] trees, ISymbolicDataAnalysisExpressionTreeInterpreter interpreter, Dataset dataset, int repetitions) {
81      // warm up
82      IEnumerable<int> rows = Enumerable.Range(0, dataset.Rows);
83      long nNodes = 0;
84      double c = 0;
85      for (int i = 0; i < trees.Length; i++) {
86        nNodes += trees[i].Length * (dataset.Rows - 1);
87        c = interpreter.GetSymbolicExpressionTreeValues(trees[i], dataset, rows).Count(); // count needs to evaluate all rows
88      }
89
90      Stopwatch watch = new Stopwatch();
91      for (int rep = 0; rep < repetitions; rep++) {
92        watch.Start();
93        c = 0;
94        for (int i = 0; i < trees.Length; i++) {
95          interpreter.GetSymbolicExpressionTreeValues(trees[i], dataset, rows).Count(); // count needs to evaluate all rows
96        }
97        watch.Stop();
98      }
99      Console.WriteLine("Random tree evaluation performance of " + interpreter.GetType() + ": " +
100        watch.ElapsedMilliseconds + "ms " +
101        Util.NodesPerSecond(nNodes * repetitions, watch) + " nodes/sec");
102      return Util.NodesPerSecond(nNodes * repetitions, watch);
103    }
104  }
105}
Note: See TracBrowser for help on using the repository browser.