1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Collections.Generic;
|
---|
23 | using System.Diagnostics;
|
---|
24 | using System.Linq;
|
---|
25 | using HeuristicLab.Random;
|
---|
26 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.Problems.DataAnalysis.Tests {
|
---|
29 | [TestClass]
|
---|
30 | public class OnlineCalculatorPerformanceTest {
|
---|
31 | private const int Rows = 5000;
|
---|
32 | private const int Columns = 2;
|
---|
33 | private const int Repetitions = 10000;
|
---|
34 |
|
---|
35 | private TestContext testContextInstance;
|
---|
36 |
|
---|
37 | /// <summary>
|
---|
38 | ///Gets or sets the test context which provides
|
---|
39 | ///information about and functionality for the current test run.
|
---|
40 | ///</summary>
|
---|
41 | public TestContext TestContext {
|
---|
42 | get { return testContextInstance; }
|
---|
43 | set { testContextInstance = value; }
|
---|
44 | }
|
---|
45 |
|
---|
46 |
|
---|
47 | [TestMethod]
|
---|
48 | public void OnlineAccuracyCalculatorPerformanceTest() {
|
---|
49 | TestCalculatorPerfomance(OnlineAccuracyCalculator.Calculate);
|
---|
50 | }
|
---|
51 | [TestMethod]
|
---|
52 | public void OnlineCovarianceCalculatorPerformanceTest() {
|
---|
53 | TestCalculatorPerfomance(OnlineCovarianceCalculator.Calculate);
|
---|
54 | }
|
---|
55 | [TestMethod]
|
---|
56 | public void OnlineMeanAbsolutePercentageErrorCalculatorPerformanceTest() {
|
---|
57 | TestCalculatorPerfomance(OnlineMeanAbsolutePercentageErrorCalculator.Calculate);
|
---|
58 | }
|
---|
59 |
|
---|
60 | [TestMethod]
|
---|
61 | public void OnlineMeanSquaredErrorCalculatorPerformanceTest() {
|
---|
62 | TestCalculatorPerfomance(OnlineMeanSquaredErrorCalculator.Calculate);
|
---|
63 | }
|
---|
64 | [TestMethod]
|
---|
65 | public void OnlineNormalizedMeanSquaredErrorCalculatorPerformanceTest() {
|
---|
66 | TestCalculatorPerfomance(OnlineNormalizedMeanSquaredErrorCalculator.Calculate);
|
---|
67 | }
|
---|
68 | [TestMethod]
|
---|
69 | public void OnlinePearsonsRSquaredCalculatorPerformanceTest() {
|
---|
70 | TestCalculatorPerfomance(OnlinePearsonsRSquaredCalculator.Calculate);
|
---|
71 | }
|
---|
72 |
|
---|
73 | private delegate double CalcateFunc(IEnumerable<double> estimated, IEnumerable<double> original, out OnlineCalculatorError errorState);
|
---|
74 | private void TestCalculatorPerfomance(CalcateFunc calculateFunc) {
|
---|
75 | var twister = new MersenneTwister(31415);
|
---|
76 | var dataset = CreateRandomDataset(twister, Rows, Columns);
|
---|
77 | OnlineCalculatorError errorState = OnlineCalculatorError.None; ;
|
---|
78 |
|
---|
79 | Stopwatch watch = new Stopwatch();
|
---|
80 | watch.Start();
|
---|
81 | for (int i = 0; i < Repetitions; i++) {
|
---|
82 | double value = calculateFunc(dataset.GetDoubleValues("y"), dataset.GetDoubleValues("x0"), out errorState);
|
---|
83 | }
|
---|
84 | Assert.AreEqual(errorState, OnlineCalculatorError.None);
|
---|
85 | watch.Stop();
|
---|
86 |
|
---|
87 | TestContext.WriteLine("");
|
---|
88 | TestContext.WriteLine("Calculated Rows per milisecond: {0}.", Rows * Repetitions * 1.0 / watch.ElapsedMilliseconds);
|
---|
89 | }
|
---|
90 |
|
---|
91 | public static Dataset CreateRandomDataset(MersenneTwister twister, int rows, int columns) {
|
---|
92 | double[,] data = new double[rows, columns];
|
---|
93 | for (int i = 0; i < rows; i++) {
|
---|
94 | for (int j = 0; j < columns; j++) {
|
---|
95 | data[i, j] = twister.NextDouble() * 2.0 - 1.0;
|
---|
96 | }
|
---|
97 | }
|
---|
98 | IEnumerable<string> variableNames = new string[] { "y" }.Concat(Enumerable.Range(0, columns - 1).Select(x => "x" + x.ToString()));
|
---|
99 | Dataset ds = new Dataset(variableNames, data);
|
---|
100 | return ds;
|
---|
101 | }
|
---|
102 | }
|
---|
103 | }
|
---|