1 | using System;
|
---|
2 | using System.Linq;
|
---|
3 | using System.Threading;
|
---|
4 | using HeuristicLab.Data;
|
---|
5 | using HeuristicLab.Optimization;
|
---|
6 | using HeuristicLab.Problems.DataAnalysis;
|
---|
7 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
8 |
|
---|
9 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
10 | [TestClass()]
|
---|
11 | public class GradientBoostingTest {
|
---|
12 | [TestMethod]
|
---|
13 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
14 | [TestProperty("Time", "short")]
|
---|
15 | public void DecisionTreeTest() {
|
---|
16 | {
|
---|
17 | var xy = new double[,]
|
---|
18 | {
|
---|
19 | {-1, 20, 0},
|
---|
20 | {-1, 20, 0},
|
---|
21 | { 1, 10, 0},
|
---|
22 | { 1, 10, 0},
|
---|
23 | };
|
---|
24 | var allVariables = new string[] { "y", "x1", "x2" };
|
---|
25 |
|
---|
26 | // x1 <= 15 -> 1
|
---|
27 | // x1 > 15 -> -1
|
---|
28 | BuildTree(xy, allVariables, 10);
|
---|
29 | }
|
---|
30 |
|
---|
31 |
|
---|
32 | {
|
---|
33 | var xy = new double[,]
|
---|
34 | {
|
---|
35 | {-1, 20, 1},
|
---|
36 | {-1, 20, -1},
|
---|
37 | { 1, 10, -1},
|
---|
38 | { 1, 10, 1},
|
---|
39 | };
|
---|
40 | var allVariables = new string[] { "y", "x1", "x2" };
|
---|
41 |
|
---|
42 | // ignore irrelevant variables
|
---|
43 | // x1 <= 15 -> 1
|
---|
44 | // x1 > 15 -> -1
|
---|
45 | BuildTree(xy, allVariables, 10);
|
---|
46 | }
|
---|
47 |
|
---|
48 | {
|
---|
49 | // split must be by x1 first
|
---|
50 | var xy = new double[,]
|
---|
51 | {
|
---|
52 | {-2, 20, 1},
|
---|
53 | {-1, 20, -1},
|
---|
54 | { 1, 10, -1},
|
---|
55 | { 2, 10, 1},
|
---|
56 | };
|
---|
57 |
|
---|
58 | var allVariables = new string[] { "y", "x1", "x2" };
|
---|
59 |
|
---|
60 | // x1 <= 15 AND x2 <= 0 -> 1
|
---|
61 | // x1 <= 15 AND x2 > 0 -> 2
|
---|
62 | // x1 > 15 AND x2 <= 0 -> -1
|
---|
63 | // x1 > 15 AND x2 > 0 -> -2
|
---|
64 | BuildTree(xy, allVariables, 10);
|
---|
65 | }
|
---|
66 |
|
---|
67 | {
|
---|
68 | // averaging ys
|
---|
69 | var xy = new double[,]
|
---|
70 | {
|
---|
71 | {-2.5, 20, 1},
|
---|
72 | {-1.5, 20, 1},
|
---|
73 | {-1.5, 20, -1},
|
---|
74 | {-0.5, 20, -1},
|
---|
75 | {0.5, 10, -1},
|
---|
76 | {1.5, 10, -1},
|
---|
77 | {1.5, 10, 1},
|
---|
78 | {2.5, 10, 1},
|
---|
79 | };
|
---|
80 |
|
---|
81 | var allVariables = new string[] { "y", "x1", "x2" };
|
---|
82 |
|
---|
83 | // x1 <= 15 AND x2 <= 0 -> 1
|
---|
84 | // x1 <= 15 AND x2 > 0 -> 2
|
---|
85 | // x1 > 15 AND x2 <= 0 -> -1
|
---|
86 | // x1 > 15 AND x2 > 0 -> -2
|
---|
87 | BuildTree(xy, allVariables, 10);
|
---|
88 | }
|
---|
89 |
|
---|
90 |
|
---|
91 | {
|
---|
92 | // diagonal split (no split possible)
|
---|
93 | var xy = new double[,]
|
---|
94 | {
|
---|
95 | { 1, 1, 1},
|
---|
96 | {-1, 1, 2},
|
---|
97 | {-1, 2, 1},
|
---|
98 | { 1, 2, 2},
|
---|
99 | };
|
---|
100 |
|
---|
101 | var allVariables = new string[] { "y", "x1", "x2" };
|
---|
102 |
|
---|
103 | // split cannot be found
|
---|
104 | // -> 0.0
|
---|
105 | BuildTree(xy, allVariables, 3);
|
---|
106 | }
|
---|
107 | {
|
---|
108 | // almost diagonal split
|
---|
109 | var xy = new double[,]
|
---|
110 | {
|
---|
111 | { 1, 1, 1},
|
---|
112 | {-1, 1, 2},
|
---|
113 | {-1, 2, 1},
|
---|
114 | { 1.0001, 2, 2},
|
---|
115 | };
|
---|
116 |
|
---|
117 | var allVariables = new string[] { "y", "x1", "x2" };
|
---|
118 | // (two possible solutions)
|
---|
119 | // x2 <= 1.5 -> 0
|
---|
120 | // x2 > 1.5 -> 0 (not quite)
|
---|
121 | BuildTree(xy, allVariables, 3);
|
---|
122 |
|
---|
123 | // x1 <= 1.5 AND x2 <= 1.5 -> 1
|
---|
124 | // x1 <= 1.5 AND x2 > 1.5 -> -1
|
---|
125 | // x1 > 1.5 AND x2 <= 1.5 -> -1
|
---|
126 | // x1 > 1.5 AND x2 > 1.5 -> 1 (not quite)
|
---|
127 | BuildTree(xy, allVariables, 7);
|
---|
128 | }
|
---|
129 | {
|
---|
130 | // unbalanced split
|
---|
131 | var xy = new double[,]
|
---|
132 | {
|
---|
133 | {-1, 1, 1},
|
---|
134 | {-1, 1, 2},
|
---|
135 | {0.9, 2, 1},
|
---|
136 | {1.1, 2, 2},
|
---|
137 | };
|
---|
138 |
|
---|
139 | var allVariables = new string[] { "y", "x1", "x2" };
|
---|
140 | // x1 <= 1.5 -> -1.0
|
---|
141 | // x1 > 1.5 AND x2 <= 1.5 -> 0.9
|
---|
142 | // x1 > 1.5 AND x2 > 1.5 -> 1.1
|
---|
143 | BuildTree(xy, allVariables, 10);
|
---|
144 | }
|
---|
145 |
|
---|
146 | {
|
---|
147 | // unbalanced split
|
---|
148 | var xy = new double[,]
|
---|
149 | {
|
---|
150 | {-1, 1, 1},
|
---|
151 | {-1, 1, 2},
|
---|
152 | {-1, 2, 1},
|
---|
153 | { 3, 2, 2},
|
---|
154 | };
|
---|
155 |
|
---|
156 | var allVariables = new string[] { "y", "x1", "x2" };
|
---|
157 | // (two possible solutions)
|
---|
158 | // x2 <= 1.5 -> -1.0
|
---|
159 | // x2 > 1.5 AND x1 <= 1.5 -> -1.0
|
---|
160 | // x2 > 1.5 AND x1 > 1.5 -> 3.0
|
---|
161 | BuildTree(xy, allVariables, 10);
|
---|
162 | }
|
---|
163 | }
|
---|
164 |
|
---|
165 | [TestMethod]
|
---|
166 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
167 | [TestProperty("Time", "long")]
|
---|
168 | public void GradientBoostingTestTowerSquaredError() {
|
---|
169 | var gbt = new GradientBoostedTreesAlgorithm();
|
---|
170 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.RegressionRealWorldInstanceProvider();
|
---|
171 | var instance = provider.GetDataDescriptors().Single(x => x.Name.Contains("Tower"));
|
---|
172 | var regProblem = new RegressionProblem();
|
---|
173 | regProblem.Load(provider.LoadData(instance));
|
---|
174 |
|
---|
175 | #region Algorithm Configuration
|
---|
176 | gbt.Problem = regProblem;
|
---|
177 | gbt.Seed = 0;
|
---|
178 | gbt.SetSeedRandomly = false;
|
---|
179 | gbt.Iterations = 5000;
|
---|
180 | gbt.MaxSize = 20;
|
---|
181 | gbt.CreateSolution = false;
|
---|
182 | #endregion
|
---|
183 |
|
---|
184 | RunAlgorithm(gbt);
|
---|
185 |
|
---|
186 | Console.WriteLine(gbt.ExecutionTime);
|
---|
187 | Assert.AreEqual(267.68704241153921, ((DoubleValue)gbt.Results["Loss (train)"].Value).Value, 1E-6);
|
---|
188 | Assert.AreEqual(393.84704062205469, ((DoubleValue)gbt.Results["Loss (test)"].Value).Value, 1E-6);
|
---|
189 | }
|
---|
190 |
|
---|
191 | [TestMethod]
|
---|
192 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
193 | [TestProperty("Time", "long")]
|
---|
194 | public void GradientBoostingTestTowerAbsoluteError() {
|
---|
195 | var gbt = new GradientBoostedTreesAlgorithm();
|
---|
196 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.RegressionRealWorldInstanceProvider();
|
---|
197 | var instance = provider.GetDataDescriptors().Single(x => x.Name.Contains("Tower"));
|
---|
198 | var regProblem = new RegressionProblem();
|
---|
199 | regProblem.Load(provider.LoadData(instance));
|
---|
200 |
|
---|
201 | #region Algorithm Configuration
|
---|
202 | gbt.Problem = regProblem;
|
---|
203 | gbt.Seed = 0;
|
---|
204 | gbt.SetSeedRandomly = false;
|
---|
205 | gbt.Iterations = 1000;
|
---|
206 | gbt.MaxSize = 20;
|
---|
207 | gbt.Nu = 0.02;
|
---|
208 | gbt.LossFunctionParameter.Value = gbt.LossFunctionParameter.ValidValues.First(l => l.ToString().Contains("Absolute"));
|
---|
209 | gbt.CreateSolution = false;
|
---|
210 | #endregion
|
---|
211 |
|
---|
212 | RunAlgorithm(gbt);
|
---|
213 |
|
---|
214 | Console.WriteLine(gbt.ExecutionTime);
|
---|
215 | Assert.AreEqual(10.551385044666661, ((DoubleValue)gbt.Results["Loss (train)"].Value).Value, 1E-6);
|
---|
216 | Assert.AreEqual(12.918001745581172, ((DoubleValue)gbt.Results["Loss (test)"].Value).Value, 1E-6);
|
---|
217 | }
|
---|
218 |
|
---|
219 | [TestMethod]
|
---|
220 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
221 | [TestProperty("Time", "long")]
|
---|
222 | public void GradientBoostingTestTowerRelativeError() {
|
---|
223 | var gbt = new GradientBoostedTreesAlgorithm();
|
---|
224 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.RegressionRealWorldInstanceProvider();
|
---|
225 | var instance = provider.GetDataDescriptors().Single(x => x.Name.Contains("Tower"));
|
---|
226 | var regProblem = new RegressionProblem();
|
---|
227 | regProblem.Load(provider.LoadData(instance));
|
---|
228 |
|
---|
229 | #region Algorithm Configuration
|
---|
230 | gbt.Problem = regProblem;
|
---|
231 | gbt.Seed = 0;
|
---|
232 | gbt.SetSeedRandomly = false;
|
---|
233 | gbt.Iterations = 3000;
|
---|
234 | gbt.MaxSize = 20;
|
---|
235 | gbt.Nu = 0.005;
|
---|
236 | gbt.LossFunctionParameter.Value = gbt.LossFunctionParameter.ValidValues.First(l => l.ToString().Contains("Relative"));
|
---|
237 | gbt.CreateSolution = false;
|
---|
238 | #endregion
|
---|
239 |
|
---|
240 | RunAlgorithm(gbt);
|
---|
241 |
|
---|
242 | Console.WriteLine(gbt.ExecutionTime);
|
---|
243 | Assert.AreEqual(0.061954221604374943, ((DoubleValue)gbt.Results["Loss (train)"].Value).Value, 1E-6);
|
---|
244 | Assert.AreEqual(0.06316303473499961, ((DoubleValue)gbt.Results["Loss (test)"].Value).Value, 1E-6);
|
---|
245 | }
|
---|
246 |
|
---|
247 | // same as in SamplesUtil
|
---|
248 | private void RunAlgorithm(IAlgorithm a) {
|
---|
249 | var trigger = new EventWaitHandle(false, EventResetMode.ManualReset);
|
---|
250 | Exception ex = null;
|
---|
251 | a.Stopped += (src, e) => { trigger.Set(); };
|
---|
252 | a.ExceptionOccurred += (src, e) => { ex = e.Value; trigger.Set(); };
|
---|
253 | a.Prepare();
|
---|
254 | a.Start();
|
---|
255 | trigger.WaitOne();
|
---|
256 |
|
---|
257 | Assert.AreEqual(ex, null);
|
---|
258 | }
|
---|
259 |
|
---|
260 | #region helper
|
---|
261 | private void BuildTree(double[,] xy, string[] allVariables, int maxSize) {
|
---|
262 | int nRows = xy.GetLength(0);
|
---|
263 | var allowedInputs = allVariables.Skip(1);
|
---|
264 | var dataset = new Dataset(allVariables, xy);
|
---|
265 | var problemData = new RegressionProblemData(dataset, allowedInputs, allVariables.First());
|
---|
266 | problemData.TrainingPartition.Start = 0;
|
---|
267 | problemData.TrainingPartition.End = nRows;
|
---|
268 | problemData.TestPartition.Start = nRows;
|
---|
269 | problemData.TestPartition.End = nRows;
|
---|
270 | var solution = GradientBoostedTreesAlgorithmStatic.TrainGbm(problemData, new SquaredErrorLoss(), maxSize, nu: 1, r: 1, m: 1, maxIterations: 1, randSeed: 31415);
|
---|
271 | var model = (GradientBoostedTreesModel)((GradientBoostedTreesModelSurrogate)solution.Model).Model;
|
---|
272 | var treeM = model.Models.Skip(1).First() as RegressionTreeModel;
|
---|
273 |
|
---|
274 | Console.WriteLine(treeM.ToString());
|
---|
275 | Console.WriteLine();
|
---|
276 | }
|
---|
277 | #endregion
|
---|
278 | }
|
---|
279 | }
|
---|