1 | using System;
|
---|
2 | using System.Collections;
|
---|
3 | using System.IO;
|
---|
4 | using System.Linq;
|
---|
5 | using System.Threading;
|
---|
6 | using HeuristicLab.Data;
|
---|
7 | using HeuristicLab.Optimization;
|
---|
8 | using HeuristicLab.Problems.DataAnalysis;
|
---|
9 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
10 |
|
---|
11 | namespace HeuristicLab.Algorithms.DataAnalysis {
|
---|
12 | [TestClass()]
|
---|
13 | public class GradientBoostingTest {
|
---|
14 | [TestMethod]
|
---|
15 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
16 | [TestProperty("Time", "short")]
|
---|
17 | public void DecisionTreeTest() {
|
---|
18 | {
|
---|
19 | var xy = new double[,]
|
---|
20 | {
|
---|
21 | {-1, 20, 0},
|
---|
22 | {-1, 20, 0},
|
---|
23 | { 1, 10, 0},
|
---|
24 | { 1, 10, 0},
|
---|
25 | };
|
---|
26 | var allVariables = new string[] { "y", "x1", "x2" };
|
---|
27 |
|
---|
28 | // x1 <= 15 -> 1
|
---|
29 | // x1 > 15 -> -1
|
---|
30 | BuildTree(xy, allVariables, 10);
|
---|
31 | }
|
---|
32 |
|
---|
33 |
|
---|
34 | {
|
---|
35 | var xy = new double[,]
|
---|
36 | {
|
---|
37 | {-1, 20, 1},
|
---|
38 | {-1, 20, -1},
|
---|
39 | { 1, 10, -1},
|
---|
40 | { 1, 10, 1},
|
---|
41 | };
|
---|
42 | var allVariables = new string[] { "y", "x1", "x2" };
|
---|
43 |
|
---|
44 | // ignore irrelevant variables
|
---|
45 | // x1 <= 15 -> 1
|
---|
46 | // x1 > 15 -> -1
|
---|
47 | BuildTree(xy, allVariables, 10);
|
---|
48 | }
|
---|
49 |
|
---|
50 | {
|
---|
51 | // split must be by x1 first
|
---|
52 | var xy = new double[,]
|
---|
53 | {
|
---|
54 | {-2, 20, 1},
|
---|
55 | {-1, 20, -1},
|
---|
56 | { 1, 10, -1},
|
---|
57 | { 2, 10, 1},
|
---|
58 | };
|
---|
59 |
|
---|
60 | var allVariables = new string[] { "y", "x1", "x2" };
|
---|
61 |
|
---|
62 | // x1 <= 15 AND x2 <= 0 -> 1
|
---|
63 | // x1 <= 15 AND x2 > 0 -> 2
|
---|
64 | // x1 > 15 AND x2 <= 0 -> -1
|
---|
65 | // x1 > 15 AND x2 > 0 -> -2
|
---|
66 | BuildTree(xy, allVariables, 10);
|
---|
67 | }
|
---|
68 |
|
---|
69 | {
|
---|
70 | // averaging ys
|
---|
71 | var xy = new double[,]
|
---|
72 | {
|
---|
73 | {-2.5, 20, 1},
|
---|
74 | {-1.5, 20, 1},
|
---|
75 | {-1.5, 20, -1},
|
---|
76 | {-0.5, 20, -1},
|
---|
77 | {0.5, 10, -1},
|
---|
78 | {1.5, 10, -1},
|
---|
79 | {1.5, 10, 1},
|
---|
80 | {2.5, 10, 1},
|
---|
81 | };
|
---|
82 |
|
---|
83 | var allVariables = new string[] { "y", "x1", "x2" };
|
---|
84 |
|
---|
85 | // x1 <= 15 AND x2 <= 0 -> 1
|
---|
86 | // x1 <= 15 AND x2 > 0 -> 2
|
---|
87 | // x1 > 15 AND x2 <= 0 -> -1
|
---|
88 | // x1 > 15 AND x2 > 0 -> -2
|
---|
89 | BuildTree(xy, allVariables, 10);
|
---|
90 | }
|
---|
91 |
|
---|
92 |
|
---|
93 | {
|
---|
94 | // diagonal split (no split possible)
|
---|
95 | var xy = new double[,]
|
---|
96 | {
|
---|
97 | { 1, 1, 1},
|
---|
98 | {-1, 1, 2},
|
---|
99 | {-1, 2, 1},
|
---|
100 | { 1, 2, 2},
|
---|
101 | };
|
---|
102 |
|
---|
103 | var allVariables = new string[] { "y", "x1", "x2" };
|
---|
104 |
|
---|
105 | // split cannot be found
|
---|
106 | // -> 0.0
|
---|
107 | BuildTree(xy, allVariables, 3);
|
---|
108 | }
|
---|
109 | {
|
---|
110 | // almost diagonal split
|
---|
111 | var xy = new double[,]
|
---|
112 | {
|
---|
113 | { 1, 1, 1},
|
---|
114 | {-1, 1, 2},
|
---|
115 | {-1, 2, 1},
|
---|
116 | { 1.0001, 2, 2},
|
---|
117 | };
|
---|
118 |
|
---|
119 | var allVariables = new string[] { "y", "x1", "x2" };
|
---|
120 | // (two possible solutions)
|
---|
121 | // x2 <= 1.5 -> 0
|
---|
122 | // x2 > 1.5 -> 0 (not quite)
|
---|
123 | BuildTree(xy, allVariables, 3);
|
---|
124 |
|
---|
125 | // x1 <= 1.5 AND x2 <= 1.5 -> 1
|
---|
126 | // x1 <= 1.5 AND x2 > 1.5 -> -1
|
---|
127 | // x1 > 1.5 AND x2 <= 1.5 -> -1
|
---|
128 | // x1 > 1.5 AND x2 > 1.5 -> 1 (not quite)
|
---|
129 | BuildTree(xy, allVariables, 7);
|
---|
130 | }
|
---|
131 | {
|
---|
132 | // unbalanced split
|
---|
133 | var xy = new double[,]
|
---|
134 | {
|
---|
135 | {-1, 1, 1},
|
---|
136 | {-1, 1, 2},
|
---|
137 | {0.9, 2, 1},
|
---|
138 | {1.1, 2, 2},
|
---|
139 | };
|
---|
140 |
|
---|
141 | var allVariables = new string[] { "y", "x1", "x2" };
|
---|
142 | // x1 <= 1.5 -> -1.0
|
---|
143 | // x1 > 1.5 AND x2 <= 1.5 -> 0.9
|
---|
144 | // x1 > 1.5 AND x2 > 1.5 -> 1.1
|
---|
145 | BuildTree(xy, allVariables, 10);
|
---|
146 | }
|
---|
147 |
|
---|
148 | {
|
---|
149 | // unbalanced split
|
---|
150 | var xy = new double[,]
|
---|
151 | {
|
---|
152 | {-1, 1, 1},
|
---|
153 | {-1, 1, 2},
|
---|
154 | {-1, 2, 1},
|
---|
155 | { 3, 2, 2},
|
---|
156 | };
|
---|
157 |
|
---|
158 | var allVariables = new string[] { "y", "x1", "x2" };
|
---|
159 | // (two possible solutions)
|
---|
160 | // x2 <= 1.5 -> -1.0
|
---|
161 | // x2 > 1.5 AND x1 <= 1.5 -> -1.0
|
---|
162 | // x2 > 1.5 AND x1 > 1.5 -> 3.0
|
---|
163 | BuildTree(xy, allVariables, 10);
|
---|
164 | }
|
---|
165 | }
|
---|
166 |
|
---|
167 | [TestMethod]
|
---|
168 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
169 | [TestProperty("Time", "short")]
|
---|
170 | public void TestDecisionTreePartialDependence() {
|
---|
171 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.RegressionRealWorldInstanceProvider();
|
---|
172 | var instance = provider.GetDataDescriptors().Single(x => x.Name.Contains("Tower"));
|
---|
173 | var regProblem = new RegressionProblem();
|
---|
174 | regProblem.Load(provider.LoadData(instance));
|
---|
175 | var problemData = regProblem.ProblemData;
|
---|
176 | var state = GradientBoostedTreesAlgorithmStatic.CreateGbmState(problemData, new SquaredErrorLoss(), randSeed: 31415, maxSize: 10, r: 0.5, m: 1, nu: 0.02);
|
---|
177 | for (int i = 0; i < 1000; i++)
|
---|
178 | GradientBoostedTreesAlgorithmStatic.MakeStep(state);
|
---|
179 |
|
---|
180 |
|
---|
181 | var mostImportantVar = state.GetVariableRelevance().OrderByDescending(kvp => kvp.Value).First();
|
---|
182 | Console.WriteLine("var: {0} relevance: {1}", mostImportantVar.Key, mostImportantVar.Value);
|
---|
183 | var model = ((IGradientBoostedTreesModel)state.GetModel());
|
---|
184 | var treeM = model.Models.Skip(1).First();
|
---|
185 | Console.WriteLine(treeM.ToString());
|
---|
186 | Console.WriteLine();
|
---|
187 |
|
---|
188 | var mostImportantVarValues = problemData.Dataset.GetDoubleValues(mostImportantVar.Key).OrderBy(x => x).ToArray();
|
---|
189 | var ds = new ModifiableDataset(new string[] { mostImportantVar.Key },
|
---|
190 | new IList[] { mostImportantVarValues.ToList<double>() });
|
---|
191 |
|
---|
192 | var estValues = model.GetEstimatedValues(ds, Enumerable.Range(0, mostImportantVarValues.Length)).ToArray();
|
---|
193 |
|
---|
194 | for (int i = 0; i < mostImportantVarValues.Length; i += 10) {
|
---|
195 | Console.WriteLine("{0,-5:N3} {1,-5:N3}", mostImportantVarValues[i], estValues[i]);
|
---|
196 | }
|
---|
197 | }
|
---|
198 |
|
---|
199 | [TestMethod]
|
---|
200 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
201 | [TestProperty("Time", "short")]
|
---|
202 | public void TestDecisionTreePersistence() {
|
---|
203 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.RegressionRealWorldInstanceProvider();
|
---|
204 | var instance = provider.GetDataDescriptors().Single(x => x.Name.Contains("Tower"));
|
---|
205 | var regProblem = new RegressionProblem();
|
---|
206 | regProblem.Load(provider.LoadData(instance));
|
---|
207 | var problemData = regProblem.ProblemData;
|
---|
208 | var state = GradientBoostedTreesAlgorithmStatic.CreateGbmState(problemData, new SquaredErrorLoss(), randSeed: 31415, maxSize: 100, r: 0.5, m: 1, nu: 1);
|
---|
209 | GradientBoostedTreesAlgorithmStatic.MakeStep(state);
|
---|
210 |
|
---|
211 | var model = ((IGradientBoostedTreesModel)state.GetModel());
|
---|
212 | var treeM = model.Models.Skip(1).First();
|
---|
213 | var origStr = treeM.ToString();
|
---|
214 | using (var memStream = new MemoryStream()) {
|
---|
215 | Persistence.Default.Xml.XmlGenerator.Serialize(treeM, memStream);
|
---|
216 | var buf = memStream.GetBuffer();
|
---|
217 | using (var restoreStream = new MemoryStream(buf)) {
|
---|
218 | var restoredTree = Persistence.Default.Xml.XmlParser.Deserialize(restoreStream);
|
---|
219 | var restoredStr = restoredTree.ToString();
|
---|
220 | Assert.AreEqual(origStr, restoredStr);
|
---|
221 | }
|
---|
222 | }
|
---|
223 | }
|
---|
224 |
|
---|
225 | [TestMethod]
|
---|
226 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
227 | [TestProperty("Time", "long")]
|
---|
228 | public void GradientBoostingTestTowerSquaredError() {
|
---|
229 | var gbt = new GradientBoostedTreesAlgorithm();
|
---|
230 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.RegressionRealWorldInstanceProvider();
|
---|
231 | var instance = provider.GetDataDescriptors().Single(x => x.Name.Contains("Tower"));
|
---|
232 | var regProblem = new RegressionProblem();
|
---|
233 | regProblem.Load(provider.LoadData(instance));
|
---|
234 |
|
---|
235 | #region Algorithm Configuration
|
---|
236 | gbt.Problem = regProblem;
|
---|
237 | gbt.Seed = 0;
|
---|
238 | gbt.SetSeedRandomly = false;
|
---|
239 | gbt.Iterations = 5000;
|
---|
240 | gbt.MaxSize = 20;
|
---|
241 | gbt.CreateSolution = false;
|
---|
242 | #endregion
|
---|
243 |
|
---|
244 | RunAlgorithm(gbt);
|
---|
245 |
|
---|
246 | Console.WriteLine(gbt.ExecutionTime);
|
---|
247 | Assert.AreEqual(267.68704241153921, ((DoubleValue)gbt.Results["Loss (train)"].Value).Value, 1E-6);
|
---|
248 | Assert.AreEqual(393.84704062205469, ((DoubleValue)gbt.Results["Loss (test)"].Value).Value, 1E-6);
|
---|
249 | }
|
---|
250 |
|
---|
251 | [TestMethod]
|
---|
252 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
253 | [TestProperty("Time", "long")]
|
---|
254 | public void GradientBoostingTestTowerAbsoluteError() {
|
---|
255 | var gbt = new GradientBoostedTreesAlgorithm();
|
---|
256 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.RegressionRealWorldInstanceProvider();
|
---|
257 | var instance = provider.GetDataDescriptors().Single(x => x.Name.Contains("Tower"));
|
---|
258 | var regProblem = new RegressionProblem();
|
---|
259 | regProblem.Load(provider.LoadData(instance));
|
---|
260 |
|
---|
261 | #region Algorithm Configuration
|
---|
262 | gbt.Problem = regProblem;
|
---|
263 | gbt.Seed = 0;
|
---|
264 | gbt.SetSeedRandomly = false;
|
---|
265 | gbt.Iterations = 1000;
|
---|
266 | gbt.MaxSize = 20;
|
---|
267 | gbt.Nu = 0.02;
|
---|
268 | gbt.LossFunctionParameter.Value = gbt.LossFunctionParameter.ValidValues.First(l => l.ToString().Contains("Absolute"));
|
---|
269 | gbt.CreateSolution = false;
|
---|
270 | #endregion
|
---|
271 |
|
---|
272 | RunAlgorithm(gbt);
|
---|
273 |
|
---|
274 | Console.WriteLine(gbt.ExecutionTime);
|
---|
275 | Assert.AreEqual(10.551385044666661, ((DoubleValue)gbt.Results["Loss (train)"].Value).Value, 1E-6);
|
---|
276 | Assert.AreEqual(12.918001745581172, ((DoubleValue)gbt.Results["Loss (test)"].Value).Value, 1E-6);
|
---|
277 | }
|
---|
278 |
|
---|
279 | [TestMethod]
|
---|
280 | [TestCategory("Algorithms.DataAnalysis")]
|
---|
281 | [TestProperty("Time", "long")]
|
---|
282 | public void GradientBoostingTestTowerRelativeError() {
|
---|
283 | var gbt = new GradientBoostedTreesAlgorithm();
|
---|
284 | var provider = new HeuristicLab.Problems.Instances.DataAnalysis.RegressionRealWorldInstanceProvider();
|
---|
285 | var instance = provider.GetDataDescriptors().Single(x => x.Name.Contains("Tower"));
|
---|
286 | var regProblem = new RegressionProblem();
|
---|
287 | regProblem.Load(provider.LoadData(instance));
|
---|
288 |
|
---|
289 | #region Algorithm Configuration
|
---|
290 | gbt.Problem = regProblem;
|
---|
291 | gbt.Seed = 0;
|
---|
292 | gbt.SetSeedRandomly = false;
|
---|
293 | gbt.Iterations = 3000;
|
---|
294 | gbt.MaxSize = 20;
|
---|
295 | gbt.Nu = 0.005;
|
---|
296 | gbt.LossFunctionParameter.Value = gbt.LossFunctionParameter.ValidValues.First(l => l.ToString().Contains("Relative"));
|
---|
297 | gbt.CreateSolution = false;
|
---|
298 | #endregion
|
---|
299 |
|
---|
300 | RunAlgorithm(gbt);
|
---|
301 |
|
---|
302 | Console.WriteLine(gbt.ExecutionTime);
|
---|
303 | Assert.AreEqual(0.061954221604374943, ((DoubleValue)gbt.Results["Loss (train)"].Value).Value, 1E-6);
|
---|
304 | Assert.AreEqual(0.06316303473499961, ((DoubleValue)gbt.Results["Loss (test)"].Value).Value, 1E-6);
|
---|
305 | }
|
---|
306 |
|
---|
307 | // same as in SamplesUtil
|
---|
308 | private void RunAlgorithm(IAlgorithm a) {
|
---|
309 | var trigger = new EventWaitHandle(false, EventResetMode.ManualReset);
|
---|
310 | Exception ex = null;
|
---|
311 | a.Stopped += (src, e) => { trigger.Set(); };
|
---|
312 | a.ExceptionOccurred += (src, e) => { ex = e.Value; trigger.Set(); };
|
---|
313 | a.Prepare();
|
---|
314 | a.Start();
|
---|
315 | trigger.WaitOne();
|
---|
316 |
|
---|
317 | Assert.AreEqual(ex, null);
|
---|
318 | }
|
---|
319 |
|
---|
320 | #region helper
|
---|
321 | private void BuildTree(double[,] xy, string[] allVariables, int maxSize) {
|
---|
322 | int nRows = xy.GetLength(0);
|
---|
323 | var allowedInputs = allVariables.Skip(1);
|
---|
324 | var dataset = new Dataset(allVariables, xy);
|
---|
325 | var problemData = new RegressionProblemData(dataset, allowedInputs, allVariables.First());
|
---|
326 | problemData.TrainingPartition.Start = 0;
|
---|
327 | problemData.TrainingPartition.End = nRows;
|
---|
328 | problemData.TestPartition.Start = nRows;
|
---|
329 | problemData.TestPartition.End = nRows;
|
---|
330 | var solution = GradientBoostedTreesAlgorithmStatic.TrainGbm(problemData, new SquaredErrorLoss(), maxSize, nu: 1, r: 1, m: 1, maxIterations: 1, randSeed: 31415);
|
---|
331 | var model = solution.Model;
|
---|
332 | var treeM = model.Models.Skip(1).First() as RegressionTreeModel;
|
---|
333 |
|
---|
334 | Console.WriteLine(treeM.ToString());
|
---|
335 | Console.WriteLine();
|
---|
336 | }
|
---|
337 | #endregion
|
---|
338 | }
|
---|
339 | }
|
---|