1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2013 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.Linq;
|
---|
23 | using HeuristicLab.Problems.Instances.DataAnalysis;
|
---|
24 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
25 |
|
---|
26 | namespace HeuristicLab.Algorithms.DataAnalysis.Tests {
|
---|
27 | [TestClass]
|
---|
28 |
|
---|
29 | // reference values calculated with Rasmussen's GPML MATLAB package
|
---|
30 | public class GaussianProcessModelTest {
|
---|
31 | [TestMethod]
|
---|
32 | [DeploymentItem(@"HeuristicLab.Algorithms.DataAnalysis-3.4/co2.txt")]
|
---|
33 | [TestCategory("General")]
|
---|
34 | [TestProperty("Time", "medium")]
|
---|
35 | public void GaussianProcessModelOutputTest() {
|
---|
36 | var provider = new RegressionCSVInstanceProvider();
|
---|
37 | var problemData = provider.ImportData("co2.txt");
|
---|
38 |
|
---|
39 | var targetVariable = "interpolated";
|
---|
40 | var allowedInputVariables = new string[] { "decimal date" };
|
---|
41 | var rows = Enumerable.Range(0, 401);
|
---|
42 |
|
---|
43 | var meanFunction = new MeanConst();
|
---|
44 | var covarianceFunction = new CovarianceSum();
|
---|
45 | covarianceFunction.Terms.Add(new CovarianceSquaredExponentialIso());
|
---|
46 | var prod = new CovarianceProduct();
|
---|
47 | prod.Factors.Add(new CovarianceSquaredExponentialIso());
|
---|
48 | prod.Factors.Add(new CovariancePeriodic());
|
---|
49 | covarianceFunction.Terms.Add(prod);
|
---|
50 |
|
---|
51 | {
|
---|
52 | var hyp = new double[] { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
|
---|
53 | var model = new GaussianProcessModel(problemData.Dataset, targetVariable, allowedInputVariables, rows, hyp,
|
---|
54 | meanFunction,
|
---|
55 | covarianceFunction);
|
---|
56 | Assert.AreEqual(4.3170e+004, model.NegativeLogLikelihood, 1);
|
---|
57 |
|
---|
58 | var dHyp = model.HyperparameterGradients;
|
---|
59 | Assert.AreEqual(-248.7932, dHyp[0], 1E-2);
|
---|
60 | var dHypCovExpected = new double[] { -0.5550e4, -5.5533e4, -0.2511e4, -2.7625e4, -1.3033e4, 0.0289e4, -2.7625e4 };
|
---|
61 | AssertEqual(dHypCovExpected, dHyp.Skip(1).Take(7).ToArray(), 1);
|
---|
62 | Assert.AreEqual(-2.0171e+003, dHyp.Last(), 1);
|
---|
63 |
|
---|
64 |
|
---|
65 | var predTrain = model.GetEstimatedValues(problemData.Dataset, new int[] { 0, 400 }).ToArray();
|
---|
66 | Assert.AreEqual(310.5930, predTrain[0], 1e-3);
|
---|
67 | Assert.AreEqual(347.9993, predTrain[1], 1e-3);
|
---|
68 |
|
---|
69 | var predTrainVar = model.GetEstimatedVariance(problemData.Dataset, problemData.TrainingIndices).ToArray();
|
---|
70 | }
|
---|
71 |
|
---|
72 | {
|
---|
73 | var hyp = new double[] { 0.029973094285941, 0.455535210579926, 3.438647883940457, 1.464114485889487, 3.001788584487478, 3.815289323309630, 4.374914122810222, 3.001788584487478, 0.716427415979145 };
|
---|
74 | var model = new GaussianProcessModel(problemData.Dataset, targetVariable, allowedInputVariables, rows, hyp,
|
---|
75 | meanFunction,
|
---|
76 | covarianceFunction);
|
---|
77 | Assert.AreEqual(872.8448, model.NegativeLogLikelihood, 1e-3);
|
---|
78 |
|
---|
79 | var dHyp = model.HyperparameterGradients;
|
---|
80 | Assert.AreEqual(-0.0046, dHyp[0], 1e-3);
|
---|
81 | var dHypCovExpected = new double[] { 0.2652, -0.2386, 0.1706, -0.1744, 0.0000, 0.0000, -0.1744 };
|
---|
82 | AssertEqual(dHypCovExpected, dHyp.Skip(1).Take(7).ToArray(), 1e-3);
|
---|
83 | Assert.AreEqual(0.8621, dHyp.Last(), 1e-3);
|
---|
84 |
|
---|
85 | var predTrain = model.GetEstimatedValues(problemData.Dataset, new int[] { 0, 400 }).ToArray();
|
---|
86 | Assert.AreEqual(315.3692, predTrain[0], 1e-3);
|
---|
87 | Assert.AreEqual(356.6076, predTrain[1], 1e-3);
|
---|
88 | }
|
---|
89 | }
|
---|
90 |
|
---|
91 |
|
---|
92 | private void AssertEqual(double[] expected, double[] actual, double delta = 1E-3) {
|
---|
93 | Assert.AreEqual(expected.Length, actual.Length);
|
---|
94 | for (int i = 0; i < expected.Length; i++)
|
---|
95 | Assert.AreEqual(expected[i], actual[i], delta);
|
---|
96 | }
|
---|
97 | }
|
---|
98 | }
|
---|