1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2015 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System.IO;
|
---|
23 | using HeuristicLab.Algorithms.OffspringSelectionGeneticAlgorithm;
|
---|
24 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
25 | using HeuristicLab.Persistence.Default.Xml;
|
---|
26 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
27 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
28 | using HeuristicLab.Problems.Instances.DataAnalysis;
|
---|
29 | using HeuristicLab.Selection;
|
---|
30 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.Tests {
|
---|
33 | [TestClass]
|
---|
34 | public class GPMultiplexerSampleTest {
|
---|
35 | private const string SampleFileName = "GP_Multiplexer";
|
---|
36 |
|
---|
37 | [TestMethod]
|
---|
38 | [TestCategory("Samples.Create")]
|
---|
39 | [TestProperty("Time", "medium")]
|
---|
40 | public void CreateGpMultiplexerSampleTest() {
|
---|
41 | var ga = CreateGpMultiplexerSample();
|
---|
42 | string path = Path.Combine(SamplesUtils.SamplesDirectory, SampleFileName + SamplesUtils.SampleFileExtension);
|
---|
43 | XmlGenerator.Serialize(ga, path);
|
---|
44 | }
|
---|
45 | [TestMethod]
|
---|
46 | [TestCategory("Samples.Execute")]
|
---|
47 | [TestProperty("Time", "long")]
|
---|
48 | public void RunGpMultiplexerSampleTest() {
|
---|
49 | var osga = CreateGpMultiplexerSample();
|
---|
50 | osga.SetSeedRandomly.Value = false;
|
---|
51 | SamplesUtils.RunAlgorithm(osga);
|
---|
52 |
|
---|
53 | Assert.AreEqual(0.125, SamplesUtils.GetDoubleResult(osga, "BestQuality"), 1E-8);
|
---|
54 | Assert.AreEqual(0.237275390625, SamplesUtils.GetDoubleResult(osga, "CurrentAverageQuality"), 1E-8);
|
---|
55 | Assert.AreEqual(1.181640625, SamplesUtils.GetDoubleResult(osga, "CurrentWorstQuality"), 1E-8);
|
---|
56 | Assert.AreEqual(105500, SamplesUtils.GetIntResult(osga, "EvaluatedSolutions"));
|
---|
57 | }
|
---|
58 |
|
---|
59 | public static OffspringSelectionGeneticAlgorithm CreateGpMultiplexerSample() {
|
---|
60 | var instanceProvider = new RegressionCSVInstanceProvider();
|
---|
61 | var regressionImportType = new RegressionImportType();
|
---|
62 | regressionImportType.TargetVariable = "output";
|
---|
63 | regressionImportType.TrainingPercentage = 100;
|
---|
64 | var dataAnalysisCSVFormat = new DataAnalysisCSVFormat();
|
---|
65 | dataAnalysisCSVFormat.Separator = ',';
|
---|
66 | dataAnalysisCSVFormat.VariableNamesAvailable = true;
|
---|
67 |
|
---|
68 | var problemData = instanceProvider.ImportData(@"Test Resources\Multiplexer11.csv", regressionImportType, dataAnalysisCSVFormat);
|
---|
69 | problemData.Name = "11-Multiplexer";
|
---|
70 |
|
---|
71 | var problem = new SymbolicRegressionSingleObjectiveProblem();
|
---|
72 | problem.Name = "11-Multiplexer Problem";
|
---|
73 | problem.ProblemData = problemData;
|
---|
74 | problem.MaximumSymbolicExpressionTreeLength.Value = 50;
|
---|
75 | problem.MaximumSymbolicExpressionTreeDepth.Value = 50;
|
---|
76 | problem.EvaluatorParameter.Value = new SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator();
|
---|
77 | problem.ApplyLinearScaling.Value = false;
|
---|
78 |
|
---|
79 |
|
---|
80 | var grammar = new FullFunctionalExpressionGrammar();
|
---|
81 | problem.SymbolicExpressionTreeGrammar = grammar;
|
---|
82 | foreach (var symbol in grammar.Symbols) {
|
---|
83 | if (symbol is ProgramRootSymbol) symbol.Enabled = true;
|
---|
84 | else if (symbol is StartSymbol) symbol.Enabled = true;
|
---|
85 | else if (symbol is IfThenElse) symbol.Enabled = true;
|
---|
86 | else if (symbol is And) symbol.Enabled = true;
|
---|
87 | else if (symbol is Or) symbol.Enabled = true;
|
---|
88 | else if (symbol is Xor) symbol.Enabled = true;
|
---|
89 | else if (symbol.GetType() == typeof(Variable)) {
|
---|
90 | //necessary as there are multiple classes derived from Variable (e.g., VariableCondition)
|
---|
91 | symbol.Enabled = true;
|
---|
92 | var variableSymbol = (Variable)symbol;
|
---|
93 | variableSymbol.MultiplicativeWeightManipulatorSigma = 0.0;
|
---|
94 | variableSymbol.WeightManipulatorSigma = 0.0;
|
---|
95 | variableSymbol.WeightSigma = 0.0;
|
---|
96 | } else symbol.Enabled = false;
|
---|
97 | }
|
---|
98 |
|
---|
99 | var osga = new OffspringSelectionGeneticAlgorithm();
|
---|
100 | osga.Name = "Genetic Programming - Multiplexer 11 problem";
|
---|
101 | osga.Description = "A genetic programming algorithm that solves the 11-bit multiplexer problem.";
|
---|
102 | osga.Problem = problem;
|
---|
103 | SamplesUtils.ConfigureOsGeneticAlgorithmParameters<GenderSpecificSelector, SubtreeCrossover, MultiSymbolicExpressionTreeManipulator>
|
---|
104 | (osga, popSize: 100, elites: 1, maxGens: 50, mutationRate: 0.25);
|
---|
105 | osga.MaximumSelectionPressure.Value = 200;
|
---|
106 | return osga;
|
---|
107 |
|
---|
108 | }
|
---|
109 | }
|
---|
110 | }
|
---|