[11051] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2014 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System.IO;
|
---|
| 23 | using HeuristicLab.Algorithms.OffspringSelectionGeneticAlgorithm;
|
---|
| 24 | using HeuristicLab.Encodings.SymbolicExpressionTreeEncoding;
|
---|
| 25 | using HeuristicLab.Persistence.Default.Xml;
|
---|
| 26 | using HeuristicLab.Problems.DataAnalysis.Symbolic;
|
---|
| 27 | using HeuristicLab.Problems.DataAnalysis.Symbolic.Regression;
|
---|
| 28 | using HeuristicLab.Problems.Instances.DataAnalysis;
|
---|
| 29 | using HeuristicLab.Selection;
|
---|
| 30 | using Microsoft.VisualStudio.TestTools.UnitTesting;
|
---|
| 31 |
|
---|
| 32 | namespace HeuristicLab.Tests {
|
---|
| 33 | [TestClass]
|
---|
| 34 | public class GPMultiplexerSampleTest {
|
---|
| 35 | private const string samplesDirectory = SamplesUtils.Directory;
|
---|
| 36 | [ClassInitialize]
|
---|
| 37 | public static void MyClassInitialize(TestContext testContext) {
|
---|
| 38 | if (!Directory.Exists(samplesDirectory))
|
---|
| 39 | Directory.CreateDirectory(samplesDirectory);
|
---|
| 40 | }
|
---|
| 41 |
|
---|
| 42 | [TestMethod]
|
---|
| 43 | [TestCategory("Samples.Create")]
|
---|
| 44 | [TestProperty("Time", "medium")]
|
---|
| 45 | public void CreateGpMultiplexerSampleTest() {
|
---|
| 46 | var ga = CreateGpMultiplexerSample();
|
---|
| 47 | var path = Path.Combine(samplesDirectory, "GP_Multiplexer.hl");
|
---|
| 48 | XmlGenerator.Serialize(ga, path);
|
---|
| 49 | }
|
---|
| 50 | [TestMethod]
|
---|
| 51 | [TestCategory("Samples.Execute")]
|
---|
| 52 | [TestProperty("Time", "long")]
|
---|
| 53 | public void RunGpMultiplexerSampleTest() {
|
---|
| 54 | var osga = CreateGpMultiplexerSample();
|
---|
| 55 | osga.SetSeedRandomly.Value = false;
|
---|
| 56 | SamplesUtils.RunAlgorithm(osga);
|
---|
| 57 |
|
---|
| 58 | Assert.AreEqual(0.125, SamplesUtils.GetDoubleResult(osga, "BestQuality"), 1E-8);
|
---|
| 59 | Assert.AreEqual(0.237275390625, SamplesUtils.GetDoubleResult(osga, "CurrentAverageQuality"), 1E-8);
|
---|
| 60 | Assert.AreEqual(1.181640625, SamplesUtils.GetDoubleResult(osga, "CurrentWorstQuality"), 1E-8);
|
---|
| 61 | Assert.AreEqual(105500, SamplesUtils.GetIntResult(osga, "EvaluatedSolutions"));
|
---|
| 62 | }
|
---|
| 63 |
|
---|
| 64 | public static OffspringSelectionGeneticAlgorithm CreateGpMultiplexerSample() {
|
---|
| 65 | var instanceProvider = new RegressionCSVInstanceProvider();
|
---|
| 66 | var regressionImportType = new RegressionImportType();
|
---|
| 67 | regressionImportType.TargetVariable = "output";
|
---|
| 68 | regressionImportType.TrainingPercentage = 100;
|
---|
| 69 | var dataAnalysisCSVFormat = new DataAnalysisCSVFormat();
|
---|
| 70 | dataAnalysisCSVFormat.Separator = ',';
|
---|
| 71 | dataAnalysisCSVFormat.VariableNamesAvailable = true;
|
---|
| 72 |
|
---|
| 73 | var problemData = instanceProvider.ImportData(@"Test Resources\Multiplexer11.csv", regressionImportType, dataAnalysisCSVFormat);
|
---|
| 74 | problemData.Name = "11-Multiplexer";
|
---|
| 75 |
|
---|
| 76 | var problem = new SymbolicRegressionSingleObjectiveProblem();
|
---|
| 77 | problem.Name = "11-Multiplexer Problem";
|
---|
| 78 | problem.ProblemData = problemData;
|
---|
| 79 | problem.MaximumSymbolicExpressionTreeLength.Value = 50;
|
---|
| 80 | problem.MaximumSymbolicExpressionTreeDepth.Value = 50;
|
---|
| 81 | problem.EvaluatorParameter.Value = new SymbolicRegressionSingleObjectiveMeanSquaredErrorEvaluator();
|
---|
| 82 | problem.ApplyLinearScaling.Value = false;
|
---|
| 83 |
|
---|
| 84 |
|
---|
| 85 | var grammar = new FullFunctionalExpressionGrammar();
|
---|
| 86 | problem.SymbolicExpressionTreeGrammar = grammar;
|
---|
| 87 | foreach (var symbol in grammar.Symbols) {
|
---|
| 88 | if (symbol is ProgramRootSymbol) symbol.Enabled = true;
|
---|
| 89 | else if (symbol is StartSymbol) symbol.Enabled = true;
|
---|
| 90 | else if (symbol is IfThenElse) symbol.Enabled = true;
|
---|
| 91 | else if (symbol is And) symbol.Enabled = true;
|
---|
| 92 | else if (symbol is Or) symbol.Enabled = true;
|
---|
| 93 | else if (symbol is Xor) symbol.Enabled = true;
|
---|
| 94 | else if (symbol.GetType() == typeof(Variable)) {
|
---|
| 95 | //necessary as there are multiple classes derived from Variable (e.g., VariableCondition)
|
---|
| 96 | symbol.Enabled = true;
|
---|
| 97 | var variableSymbol = (Variable)symbol;
|
---|
| 98 | variableSymbol.MultiplicativeWeightManipulatorSigma = 0.0;
|
---|
| 99 | variableSymbol.WeightManipulatorSigma = 0.0;
|
---|
| 100 | variableSymbol.WeightSigma = 0.0;
|
---|
| 101 | } else symbol.Enabled = false;
|
---|
| 102 | }
|
---|
| 103 |
|
---|
| 104 | var osga = new OffspringSelectionGeneticAlgorithm();
|
---|
| 105 | osga.Name = "Genetic Programming - Multiplexer 11 problem";
|
---|
| 106 | osga.Description = "A genetic programming algorithm that solves the 11-bit multiplexer problem.";
|
---|
| 107 | osga.Problem = problem;
|
---|
| 108 | SamplesUtils.ConfigureOsGeneticAlgorithmParameters<GenderSpecificSelector, SubtreeCrossover, MultiSymbolicExpressionTreeManipulator>
|
---|
| 109 | (osga, popSize: 100, elites: 1, maxGens: 50, mutationRate: 0.25);
|
---|
| 110 | osga.MaximumSelectionPressure.Value = 200;
|
---|
| 111 | return osga;
|
---|
| 112 |
|
---|
| 113 | }
|
---|
| 114 | }
|
---|
| 115 | }
|
---|