[2041] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Text;
|
---|
| 25 | using System.Xml;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.DataAnalysis;
|
---|
| 29 | using System.Linq;
|
---|
| 30 |
|
---|
[2043] | 31 | namespace HeuristicLab.SupportVectorMachines {
|
---|
[2041] | 32 | public class VariableEvaluationImpactCalculator : HeuristicLab.Modeling.VariableEvaluationImpactCalculator {
|
---|
| 33 |
|
---|
| 34 | public VariableEvaluationImpactCalculator()
|
---|
| 35 | : base() {
|
---|
[2043] | 36 | AddVariableInfo(new VariableInfo("SVMModel", "The model that should be evaluated", typeof(SVMModel), VariableKind.In));
|
---|
[2041] | 37 | }
|
---|
| 38 |
|
---|
| 39 |
|
---|
[2165] | 40 | protected override double[] GetOutputs(IScope scope, Dataset dataset, int targetVariable, int start, int end) {
|
---|
[2043] | 41 | SVMModel model = GetVariableValue<SVMModel>("SVMModel", scope, true);
|
---|
[2165] | 42 | SVM.Problem problem = SVMHelper.CreateSVMProblem(dataset, targetVariable, start, end);
|
---|
[2043] | 43 | SVM.Problem scaledProblem = SVM.Scaling.Scale(problem, model.RangeTransform);
|
---|
[2041] | 44 |
|
---|
[2043] | 45 | double[] values = new double[end - start];
|
---|
| 46 | for (int i = 0; i < end - start; i++) {
|
---|
| 47 | values[i] = SVM.Prediction.Predict(model.Model, scaledProblem.X[i]);
|
---|
[2041] | 48 | }
|
---|
[2043] | 49 | return values;
|
---|
[2041] | 50 | }
|
---|
| 51 | }
|
---|
| 52 | }
|
---|