Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.SupportVectorMachines/3.2/SupportVectorEvaluator.cs @ 2106

Last change on this file since 2106 was 2043, checked in by gkronber, 15 years ago

Added variable impact calculation operators for support vector machines. #644 (Variable impact of CEDMA models should be calculated and stored in the result DB)

File size: 3.3 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2009 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.DataAnalysis;
29
30namespace HeuristicLab.SupportVectorMachines {
31  public class SupportVectorEvaluator : OperatorBase {
32
33    public SupportVectorEvaluator()
34      : base() {
35      //Dataset infos
36      AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In));
37      AddVariableInfo(new VariableInfo("AllowedFeatures", "List of indexes of allowed features", typeof(ItemList<IntData>), VariableKind.In));
38      AddVariableInfo(new VariableInfo("TargetVariable", "Index of the column of the dataset that holds the target variable", typeof(IntData), VariableKind.In));
39      AddVariableInfo(new VariableInfo("SamplesStart", "Start index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
40      AddVariableInfo(new VariableInfo("SamplesEnd", "End index of samples in dataset to evaluate", typeof(IntData), VariableKind.In));
41
42      AddVariableInfo(new VariableInfo("SVMModel", "Represent the model learned by the SVM", typeof(SVMModel), VariableKind.In));
43      AddVariableInfo(new VariableInfo("Values", "Target vs predicted values", typeof(DoubleMatrixData), VariableKind.New | VariableKind.Out));
44    }
45
46
47    public override IOperation Apply(IScope scope) {
48      Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
49      ItemList<IntData> allowedFeatures = GetVariableValue<ItemList<IntData>>("AllowedFeatures", scope, true);
50      int targetVariable = GetVariableValue<IntData>("TargetVariable", scope, true).Data;
51      int start = GetVariableValue<IntData>("SamplesStart", scope, true).Data;
52      int end = GetVariableValue<IntData>("SamplesEnd", scope, true).Data;
53
54      SVMModel modelData = GetVariableValue<SVMModel>("SVMModel", scope, true);
55      SVM.Problem problem = SVMHelper.CreateSVMProblem(dataset, allowedFeatures, targetVariable, start, end);
56      SVM.Problem scaledProblem = SVM.Scaling.Scale(problem, modelData.RangeTransform);
57
58      double[,] values = new double[end-start, 2];
59      for (int i = 0; i < end - start; i++) {
60        values[i,0] = SVM.Prediction.Predict(modelData.Model, scaledProblem.X[i]);
61        values[i,1] = dataset.GetValue(start + i,targetVariable);
62      }
63
64      scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("Values"), new DoubleMatrixData(values)));
65      return null;
66    }
67  }
68}
Note: See TracBrowser for help on using the repository browser.