Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.SupportVectorMachines/3.2/SVMHelper.cs @ 2301

Last change on this file since 2301 was 2290, checked in by gkronber, 15 years ago
  • introduced a variablename to index mapping for SVM models (to make sure we can use the model for prediction in the model analyzer)
  • added support to enable and disable algorithms in the dispatcher and removed DispatcherBase
  • fixed bugs when calculating variable impacts and reading the final model of GP algorithms

#722 (IModel should provide a Predict() method to get predicted values for an input vector)

File size: 2.1 KB
Line 
1using System;
2using System.Collections.Generic;
3using System.Linq;
4using System.Text;
5using HeuristicLab.Core;
6using HeuristicLab.Data;
7using HeuristicLab.DataAnalysis;
8
9namespace HeuristicLab.SupportVectorMachines {
10  public class SVMHelper {
11
12    public static SVM.Problem CreateSVMProblem(Dataset dataset, int targetVariable, int start, int end) {
13      return CreateSVMProblem(dataset, targetVariable, Enumerable.Range(0, dataset.Columns).ToDictionary<int, int>(x => x), start, end);
14    }
15
16    public static SVM.Problem CreateSVMProblem(Dataset dataset, int targetVariable, Dictionary<int, int> columnMapping, int start, int end) {
17      int rowCount = end - start;
18      List<int> skippedFeatures = new List<int>();
19      for (int i = 0; i < dataset.Columns; i++) {
20        if (i != targetVariable) {
21          if (dataset.GetRange(i, start, end) == 0)
22            skippedFeatures.Add(i);
23        }
24      }
25
26      int maxColumns = dataset.Columns - skippedFeatures.Count();
27
28      double[] targetVector = new double[rowCount];
29      for (int i = 0; i < rowCount; i++) {
30        double value = dataset.GetValue(start + i, targetVariable);
31        targetVector[i] = value;
32      }
33      targetVector = targetVector.Where(x => !double.IsNaN(x)).ToArray();
34
35      SVM.Node[][] nodes = new SVM.Node[targetVector.Length][];
36      List<SVM.Node> tempRow;
37      int addedRows = 0;
38      for (int row = 0; row < rowCount; row++) {
39        tempRow = new List<SVM.Node>();
40        for (int col = 0; col < dataset.Columns; col++) {
41          if (!skippedFeatures.Contains(col) && col != targetVariable && columnMapping.ContainsKey(col)) {
42            double value = dataset.GetValue(start + row, col);
43            if (!double.IsNaN(value))
44              tempRow.Add(new SVM.Node(columnMapping[col], value));
45          }
46        }
47        if (!double.IsNaN(dataset.GetValue(start + row, targetVariable))) {
48          nodes[addedRows] = tempRow.ToArray();
49          addedRows++;
50        }
51      }
52
53      return new SVM.Problem(targetVector.Length, targetVector, nodes, maxColumns);
54    }
55  }
56}
Note: See TracBrowser for help on using the repository browser.