1 | using System;
|
---|
2 | using System.Collections.Generic;
|
---|
3 | using System.Linq;
|
---|
4 | using System.Text;
|
---|
5 | using HeuristicLab.Core;
|
---|
6 | using HeuristicLab.Data;
|
---|
7 | using HeuristicLab.DataAnalysis;
|
---|
8 |
|
---|
9 | namespace HeuristicLab.SupportVectorMachines {
|
---|
10 | public class SVMHelper {
|
---|
11 |
|
---|
12 | public static SVM.Problem CreateSVMProblem(Dataset dataset, int targetVariable, int start, int end) {
|
---|
13 | return CreateSVMProblem(dataset, targetVariable, Enumerable.Range(0, dataset.Columns).ToDictionary<int, int>(x => x), start, end);
|
---|
14 | }
|
---|
15 |
|
---|
16 | public static SVM.Problem CreateSVMProblem(Dataset dataset, int targetVariable, Dictionary<int, int> columnMapping, int start, int end) {
|
---|
17 | int rowCount = end - start;
|
---|
18 | List<int> skippedFeatures = new List<int>();
|
---|
19 | for (int i = 0; i < dataset.Columns; i++) {
|
---|
20 | if (i != targetVariable) {
|
---|
21 | if (dataset.GetRange(i, start, end) == 0)
|
---|
22 | skippedFeatures.Add(i);
|
---|
23 | }
|
---|
24 | }
|
---|
25 |
|
---|
26 | int maxColumns = dataset.Columns - skippedFeatures.Count();
|
---|
27 |
|
---|
28 | double[] targetVector = new double[rowCount];
|
---|
29 | for (int i = 0; i < rowCount; i++) {
|
---|
30 | double value = dataset.GetValue(start + i, targetVariable);
|
---|
31 | targetVector[i] = value;
|
---|
32 | }
|
---|
33 | targetVector = targetVector.Where(x => !double.IsNaN(x)).ToArray();
|
---|
34 |
|
---|
35 | SVM.Node[][] nodes = new SVM.Node[targetVector.Length][];
|
---|
36 | List<SVM.Node> tempRow;
|
---|
37 | int addedRows = 0;
|
---|
38 | for (int row = 0; row < rowCount; row++) {
|
---|
39 | tempRow = new List<SVM.Node>();
|
---|
40 | for (int col = 0; col < dataset.Columns; col++) {
|
---|
41 | if (!skippedFeatures.Contains(col) && col != targetVariable && columnMapping.ContainsKey(col)) {
|
---|
42 | double value = dataset.GetValue(start + row, col);
|
---|
43 | if (!double.IsNaN(value))
|
---|
44 | tempRow.Add(new SVM.Node(columnMapping[col], value));
|
---|
45 | }
|
---|
46 | }
|
---|
47 | if (!double.IsNaN(dataset.GetValue(start + row, targetVariable))) {
|
---|
48 | nodes[addedRows] = tempRow.ToArray();
|
---|
49 | addedRows++;
|
---|
50 | }
|
---|
51 | }
|
---|
52 |
|
---|
53 | return new SVM.Problem(targetVector.Length, targetVector, nodes, maxColumns);
|
---|
54 | }
|
---|
55 | }
|
---|
56 | }
|
---|