1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Text;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Modeling;
|
---|
29 | using HeuristicLab.DataAnalysis;
|
---|
30 |
|
---|
31 | namespace HeuristicLab.SupportVectorMachines {
|
---|
32 | public class PredictorBuilder : OperatorBase {
|
---|
33 | public PredictorBuilder()
|
---|
34 | : base() {
|
---|
35 | AddVariableInfo(new VariableInfo("Dataset", "The input dataset", typeof(Dataset), VariableKind.In));
|
---|
36 | AddVariableInfo(new VariableInfo("SVMModel", "The SVM model", typeof(SVMModel), VariableKind.In));
|
---|
37 | AddVariableInfo(new VariableInfo("TargetVariable", "The target variable", typeof(StringData), VariableKind.In));
|
---|
38 | AddVariableInfo(new VariableInfo("InputVariables", "The input variable names", typeof(ItemList), VariableKind.In));
|
---|
39 | AddVariableInfo(new VariableInfo("TrainingSamplesStart", "Start index of the training set", typeof(IntData), VariableKind.In));
|
---|
40 | AddVariableInfo(new VariableInfo("TrainingSamplesEnd", "End index of the training set", typeof(IntData), VariableKind.In));
|
---|
41 | AddVariableInfo(new VariableInfo("MaxTimeOffset", "(optional) highest allowed time offset value", typeof(IntData), VariableKind.In));
|
---|
42 | AddVariableInfo(new VariableInfo("MinTimeOffset", "(optional) lowest allowed time offset value", typeof(IntData), VariableKind.In));
|
---|
43 | AddVariableInfo(new VariableInfo("PunishmentFactor", "The punishment factor limits the range of predicted values", typeof(DoubleData), VariableKind.In));
|
---|
44 | AddVariableInfo(new VariableInfo("Predictor", "The predictor can be used to generate estimated values", typeof(IPredictor), VariableKind.New));
|
---|
45 | }
|
---|
46 |
|
---|
47 | public override string Description {
|
---|
48 | get { return "Extracts the SVM Model and generates a predictor for the model analyzer."; }
|
---|
49 | }
|
---|
50 |
|
---|
51 | public override IOperation Apply(IScope scope) {
|
---|
52 | Dataset ds = GetVariableValue<Dataset>("Dataset", scope, true);
|
---|
53 | SVMModel model = GetVariableValue<SVMModel>("SVMModel", scope, true);
|
---|
54 | string targetVariable = GetVariableValue<StringData>("TargetVariable", scope, true).Data;
|
---|
55 | int start = GetVariableValue<IntData>("TrainingSamplesStart", scope, true).Data;
|
---|
56 | int end = GetVariableValue<IntData>("TrainingSamplesEnd", scope, true).Data;
|
---|
57 | IntData maxTimeOffsetData = GetVariableValue<IntData>("MaxTimeOffset", scope, true, false);
|
---|
58 | int maxTimeOffset = maxTimeOffsetData == null ? 0 : maxTimeOffsetData.Data;
|
---|
59 | IntData minTimeOffsetData = GetVariableValue<IntData>("MinTimeOffset", scope, true, false);
|
---|
60 | int minTimeOffset = minTimeOffsetData == null ? 0 : minTimeOffsetData.Data;
|
---|
61 | double punishmentFactor = GetVariableValue<DoubleData>("PunishmentFactor", scope, true).Data;
|
---|
62 |
|
---|
63 |
|
---|
64 | ItemList inputVariables = GetVariableValue<ItemList>("InputVariables", scope, true);
|
---|
65 | var inputVariableNames = from x in inputVariables
|
---|
66 | select ((StringData)x).Data;
|
---|
67 |
|
---|
68 | var predictor = CreatePredictor(model, ds, targetVariable, inputVariableNames, punishmentFactor, start, end, minTimeOffset, maxTimeOffset);
|
---|
69 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("Predictor"), predictor));
|
---|
70 | return null;
|
---|
71 | }
|
---|
72 |
|
---|
73 | public static Predictor CreatePredictor(SVMModel model, Dataset ds, string targetVariable, IEnumerable<string> inputVariables, double punishmentFactor,
|
---|
74 | int start, int end, int minTimeOffset, int maxTimeOffset) {
|
---|
75 | Predictor predictor = new Predictor(model, targetVariable, inputVariables, minTimeOffset, maxTimeOffset);
|
---|
76 | double mean = ds.GetMean(targetVariable, start, end);
|
---|
77 | double range = ds.GetRange(targetVariable, start, end);
|
---|
78 | predictor.LowerPredictionLimit = mean - punishmentFactor * range;
|
---|
79 | predictor.UpperPredictionLimit = mean + punishmentFactor * range;
|
---|
80 | return predictor;
|
---|
81 | }
|
---|
82 | }
|
---|
83 | }
|
---|