Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.SupportVectorMachines/3.2/PredictorBuilder.cs @ 3501

Last change on this file since 3501 was 2550, checked in by gkronber, 15 years ago

Implemented #812 (Static methods for SVM operators).

File size: 4.6 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Modeling;
29using HeuristicLab.DataAnalysis;
30
31namespace HeuristicLab.SupportVectorMachines {
32  public class PredictorBuilder : OperatorBase {
33    public PredictorBuilder()
34      : base() {
35      AddVariableInfo(new VariableInfo("Dataset", "The input dataset", typeof(Dataset), VariableKind.In));
36      AddVariableInfo(new VariableInfo("SVMModel", "The SVM model", typeof(SVMModel), VariableKind.In));
37      AddVariableInfo(new VariableInfo("TargetVariable", "The target variable", typeof(StringData), VariableKind.In));
38      AddVariableInfo(new VariableInfo("InputVariables", "The input variable names", typeof(ItemList), VariableKind.In));
39      AddVariableInfo(new VariableInfo("TrainingSamplesStart", "Start index of the training set", typeof(IntData), VariableKind.In));
40      AddVariableInfo(new VariableInfo("TrainingSamplesEnd", "End index of the training set", typeof(IntData), VariableKind.In));
41      AddVariableInfo(new VariableInfo("MaxTimeOffset", "(optional) highest allowed time offset value", typeof(IntData), VariableKind.In));
42      AddVariableInfo(new VariableInfo("MinTimeOffset", "(optional) lowest allowed time offset value", typeof(IntData), VariableKind.In));
43      AddVariableInfo(new VariableInfo("PunishmentFactor", "The punishment factor limits the range of predicted values", typeof(DoubleData), VariableKind.In));
44      AddVariableInfo(new VariableInfo("Predictor", "The predictor can be used to generate estimated values", typeof(IPredictor), VariableKind.New));
45    }
46
47    public override string Description {
48      get { return "Extracts the SVM Model and generates a predictor for the model analyzer."; }
49    }
50
51    public override IOperation Apply(IScope scope) {
52      Dataset ds = GetVariableValue<Dataset>("Dataset", scope, true);
53      SVMModel model = GetVariableValue<SVMModel>("SVMModel", scope, true);
54      string targetVariable = GetVariableValue<StringData>("TargetVariable", scope, true).Data;
55      int start = GetVariableValue<IntData>("TrainingSamplesStart", scope, true).Data;
56      int end = GetVariableValue<IntData>("TrainingSamplesEnd", scope, true).Data;
57      IntData maxTimeOffsetData = GetVariableValue<IntData>("MaxTimeOffset", scope, true, false);
58      int maxTimeOffset = maxTimeOffsetData == null ? 0 : maxTimeOffsetData.Data;
59      IntData minTimeOffsetData = GetVariableValue<IntData>("MinTimeOffset", scope, true, false);
60      int minTimeOffset = minTimeOffsetData == null ? 0 : minTimeOffsetData.Data;
61      double punishmentFactor = GetVariableValue<DoubleData>("PunishmentFactor", scope, true).Data;
62
63
64      ItemList inputVariables = GetVariableValue<ItemList>("InputVariables", scope, true);
65      var inputVariableNames = from x in inputVariables
66                               select ((StringData)x).Data;
67
68      var predictor = CreatePredictor(model, ds, targetVariable, inputVariableNames, punishmentFactor, start, end, minTimeOffset, maxTimeOffset);
69      scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("Predictor"), predictor));
70      return null;
71    }
72
73    public static Predictor CreatePredictor(SVMModel model, Dataset ds, string targetVariable, IEnumerable<string> inputVariables, double punishmentFactor,
74      int start, int end, int minTimeOffset, int maxTimeOffset) {
75      Predictor predictor = new Predictor(model, targetVariable, inputVariables, minTimeOffset, maxTimeOffset);
76      double mean = ds.GetMean(targetVariable, start, end);
77      double range = ds.GetRange(targetVariable, start, end);
78      predictor.LowerPredictionLimit = mean - punishmentFactor * range;
79      predictor.UpperPredictionLimit = mean + punishmentFactor * range;
80      return predictor;
81    }
82  }
83}
Note: See TracBrowser for help on using the repository browser.