[2285] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Text;
|
---|
| 25 | using System.Xml;
|
---|
[2413] | 26 | using System.Linq;
|
---|
[2285] | 27 | using HeuristicLab.Core;
|
---|
| 28 | using System.Globalization;
|
---|
| 29 | using System.IO;
|
---|
| 30 | using HeuristicLab.Modeling;
|
---|
| 31 | using SVM;
|
---|
| 32 | using HeuristicLab.DataAnalysis;
|
---|
| 33 |
|
---|
| 34 | namespace HeuristicLab.SupportVectorMachines {
|
---|
[2328] | 35 | public class Predictor : PredictorBase {
|
---|
[2285] | 36 | private SVMModel svmModel;
|
---|
[2328] | 37 | public SVMModel Model {
|
---|
| 38 | get { return svmModel; }
|
---|
| 39 | }
|
---|
| 40 |
|
---|
[2421] | 41 | private List<string> variableNames;
|
---|
[2285] | 42 | private string targetVariable;
|
---|
[2347] | 43 | private int minTimeOffset;
|
---|
[2373] | 44 | public int MinTimeOffset {
|
---|
| 45 | get { return minTimeOffset; }
|
---|
| 46 | }
|
---|
[2347] | 47 | private int maxTimeOffset;
|
---|
[2373] | 48 | public int MaxTimeOffset {
|
---|
| 49 | get { return maxTimeOffset; }
|
---|
| 50 | }
|
---|
[2285] | 51 |
|
---|
[2436] | 52 | // for persistence
|
---|
| 53 | public Predictor() : base() { }
|
---|
[2285] | 54 |
|
---|
[2421] | 55 | public Predictor(SVMModel model, string targetVariable, IEnumerable<string> variableNames) :
|
---|
[2347] | 56 | this(model, targetVariable, variableNames, 0, 0) {
|
---|
| 57 | }
|
---|
| 58 |
|
---|
[2421] | 59 | public Predictor(SVMModel model, string targetVariable, IEnumerable<string> variableNames, int minTimeOffset, int maxTimeOffset)
|
---|
[2436] | 60 | : this() {
|
---|
[2285] | 61 | this.svmModel = model;
|
---|
| 62 | this.targetVariable = targetVariable;
|
---|
[2347] | 63 | this.minTimeOffset = minTimeOffset;
|
---|
| 64 | this.maxTimeOffset = maxTimeOffset;
|
---|
[2436] | 65 | this.variableNames = new List<string>(variableNames);
|
---|
[2285] | 66 | }
|
---|
| 67 |
|
---|
[2619] | 68 | public override IEnumerable<double> Predict(Dataset input, int start, int end) {
|
---|
[2285] | 69 | if (start < 0 || end <= start) throw new ArgumentException("start must be larger than zero and strictly smaller than end");
|
---|
| 70 | if (end > input.Rows) throw new ArgumentOutOfRangeException("number of rows in input is smaller then end");
|
---|
| 71 | RangeTransform transform = svmModel.RangeTransform;
|
---|
| 72 | Model model = svmModel.Model;
|
---|
| 73 |
|
---|
[2421] | 74 | Problem p = SVMHelper.CreateSVMProblem(input, input.GetVariableIndex(targetVariable), variableNames,
|
---|
[2347] | 75 | start, end, minTimeOffset, maxTimeOffset);
|
---|
[2415] | 76 | Problem scaledProblem = transform.Scale(p);
|
---|
[2285] | 77 |
|
---|
[2412] | 78 | int targetVariableIndex = input.GetVariableIndex(targetVariable);
|
---|
[2285] | 79 | int rows = end - start;
|
---|
[2619] | 80 | //double[] result = new double[rows];
|
---|
[2412] | 81 | int problemRow = 0;
|
---|
| 82 | for (int resultRow = 0; resultRow < rows; resultRow++) {
|
---|
| 83 | if (double.IsNaN(input.GetValue(resultRow, targetVariableIndex)))
|
---|
[2619] | 84 | yield return UpperPredictionLimit;
|
---|
[2421] | 85 | else if (resultRow + maxTimeOffset < 0) {
|
---|
| 86 | problemRow++;
|
---|
[2619] | 87 | yield return UpperPredictionLimit;
|
---|
[2421] | 88 | } else {
|
---|
[2619] | 89 | yield return Math.Max(Math.Min(SVM.Prediction.Predict(model, scaledProblem.X[problemRow++]), UpperPredictionLimit), LowerPredictionLimit);
|
---|
[2421] | 90 | }
|
---|
[2285] | 91 | }
|
---|
| 92 | }
|
---|
| 93 |
|
---|
[2381] | 94 | public override IEnumerable<string> GetInputVariables() {
|
---|
[2421] | 95 | return variableNames;
|
---|
[2381] | 96 | }
|
---|
| 97 |
|
---|
[2285] | 98 | public override IView CreateView() {
|
---|
[2328] | 99 | return new PredictorView(this);
|
---|
[2285] | 100 | }
|
---|
| 101 |
|
---|
| 102 | public override object Clone(IDictionary<Guid, object> clonedObjects) {
|
---|
| 103 | Predictor clone = (Predictor)base.Clone(clonedObjects);
|
---|
| 104 | clone.svmModel = (SVMModel)Auxiliary.Clone(svmModel, clonedObjects);
|
---|
| 105 | clone.targetVariable = targetVariable;
|
---|
[2421] | 106 | clone.variableNames = new List<string>(variableNames);
|
---|
[2347] | 107 | clone.minTimeOffset = minTimeOffset;
|
---|
| 108 | clone.maxTimeOffset = maxTimeOffset;
|
---|
[2285] | 109 | return clone;
|
---|
| 110 | }
|
---|
| 111 |
|
---|
| 112 | public override XmlNode GetXmlNode(string name, XmlDocument document, IDictionary<Guid, IStorable> persistedObjects) {
|
---|
| 113 | XmlNode node = base.GetXmlNode(name, document, persistedObjects);
|
---|
| 114 | XmlAttribute targetVarAttr = document.CreateAttribute("TargetVariable");
|
---|
| 115 | targetVarAttr.Value = targetVariable;
|
---|
| 116 | node.Attributes.Append(targetVarAttr);
|
---|
[2347] | 117 | XmlAttribute minTimeOffsetAttr = document.CreateAttribute("MinTimeOffset");
|
---|
| 118 | XmlAttribute maxTimeOffsetAttr = document.CreateAttribute("MaxTimeOffset");
|
---|
| 119 | minTimeOffsetAttr.Value = XmlConvert.ToString(minTimeOffset);
|
---|
| 120 | maxTimeOffsetAttr.Value = XmlConvert.ToString(maxTimeOffset);
|
---|
| 121 | node.Attributes.Append(minTimeOffsetAttr);
|
---|
| 122 | node.Attributes.Append(maxTimeOffsetAttr);
|
---|
[2285] | 123 | node.AppendChild(PersistenceManager.Persist(svmModel, document, persistedObjects));
|
---|
[2290] | 124 | XmlNode variablesNode = document.CreateElement("Variables");
|
---|
[2421] | 125 | foreach (var variableName in variableNames) {
|
---|
| 126 | XmlNode variableNameNode = document.CreateElement("Variable");
|
---|
[2290] | 127 | XmlAttribute nameAttr = document.CreateAttribute("Name");
|
---|
[2421] | 128 | nameAttr.Value = variableName;
|
---|
| 129 | variableNameNode.Attributes.Append(nameAttr);
|
---|
| 130 | variablesNode.AppendChild(variableNameNode);
|
---|
[2290] | 131 | }
|
---|
| 132 | node.AppendChild(variablesNode);
|
---|
[2285] | 133 | return node;
|
---|
| 134 | }
|
---|
| 135 |
|
---|
| 136 | public override void Populate(XmlNode node, IDictionary<Guid, IStorable> restoredObjects) {
|
---|
| 137 | base.Populate(node, restoredObjects);
|
---|
| 138 | targetVariable = node.Attributes["TargetVariable"].Value;
|
---|
| 139 | svmModel = (SVMModel)PersistenceManager.Restore(node.ChildNodes[0], restoredObjects);
|
---|
[2290] | 140 |
|
---|
[2347] | 141 | if (node.Attributes["MinTimeOffset"] != null) minTimeOffset = XmlConvert.ToInt32(node.Attributes["MinTimeOffset"].Value);
|
---|
| 142 | if (node.Attributes["MaxTimeOffset"] != null) maxTimeOffset = XmlConvert.ToInt32(node.Attributes["MaxTimeOffset"].Value);
|
---|
[2421] | 143 | variableNames = new List<string>();
|
---|
[2290] | 144 | XmlNode variablesNode = node.ChildNodes[1];
|
---|
[2421] | 145 | foreach (XmlNode variableNameNode in variablesNode.ChildNodes) {
|
---|
| 146 | variableNames.Add(variableNameNode.Attributes["Name"].Value);
|
---|
[2290] | 147 | }
|
---|
[2285] | 148 | }
|
---|
[2415] | 149 |
|
---|
| 150 | public static void Export(Predictor p, Stream s) {
|
---|
| 151 | StreamWriter writer = new StreamWriter(s);
|
---|
| 152 | writer.Write("Targetvariable: "); writer.WriteLine(p.targetVariable);
|
---|
[2418] | 153 | writer.Write("LowerPredictionLimit: "); writer.WriteLine(p.LowerPredictionLimit.ToString("r", CultureInfo.InvariantCulture.NumberFormat));
|
---|
| 154 | writer.Write("UpperPredictionLimit: "); writer.WriteLine(p.UpperPredictionLimit.ToString("r", CultureInfo.InvariantCulture.NumberFormat));
|
---|
[2415] | 155 | writer.Write("MaxTimeOffset: "); writer.WriteLine(p.MaxTimeOffset.ToString());
|
---|
| 156 | writer.Write("MinTimeOffset: "); writer.WriteLine(p.MinTimeOffset.ToString());
|
---|
| 157 | writer.Write("InputVariables :");
|
---|
| 158 | writer.Write(p.GetInputVariables().First());
|
---|
| 159 | foreach (string variable in p.GetInputVariables().Skip(1)) {
|
---|
| 160 | writer.Write("; "); writer.Write(variable);
|
---|
| 161 | }
|
---|
| 162 | writer.WriteLine();
|
---|
| 163 | writer.Flush();
|
---|
| 164 | using (MemoryStream memStream = new MemoryStream()) {
|
---|
| 165 | SVMModel.Export(p.Model, memStream);
|
---|
| 166 | memStream.WriteTo(s);
|
---|
| 167 | }
|
---|
| 168 | }
|
---|
| 169 |
|
---|
[2418] | 170 | public static Predictor Import(TextReader reader) {
|
---|
[2415] | 171 | string[] targetVariableLine = reader.ReadLine().Split(':');
|
---|
| 172 | string[] lowerPredictionLimitLine = reader.ReadLine().Split(':');
|
---|
| 173 | string[] upperPredictionLimitLine = reader.ReadLine().Split(':');
|
---|
| 174 | string[] maxTimeOffsetLine = reader.ReadLine().Split(':');
|
---|
| 175 | string[] minTimeOffsetLine = reader.ReadLine().Split(':');
|
---|
| 176 | string[] inputVariableLine = reader.ReadLine().Split(':', ';');
|
---|
| 177 |
|
---|
[2436] | 178 | string targetVariable = targetVariableLine[1].Trim();
|
---|
| 179 | double lowerPredictionLimit = double.Parse(lowerPredictionLimitLine[1], CultureInfo.InvariantCulture.NumberFormat);
|
---|
| 180 | double upperPredictionLimit = double.Parse(upperPredictionLimitLine[1], CultureInfo.InvariantCulture.NumberFormat);
|
---|
| 181 | int maxTimeOffset = int.Parse(maxTimeOffsetLine[1]);
|
---|
| 182 | int minTimeOffset = int.Parse(minTimeOffsetLine[1]);
|
---|
| 183 | List<string> variableNames = new List<string>();
|
---|
[2415] | 184 | foreach (string inputVariable in inputVariableLine.Skip(1)) {
|
---|
[2436] | 185 | variableNames.Add(inputVariable.Trim());
|
---|
[2415] | 186 | }
|
---|
[2436] | 187 | SVMModel model = SVMModel.Import(reader);
|
---|
| 188 | Predictor p = new Predictor(model, targetVariable, variableNames, minTimeOffset, maxTimeOffset);
|
---|
| 189 | p.UpperPredictionLimit = upperPredictionLimit;
|
---|
| 190 | p.LowerPredictionLimit = lowerPredictionLimit;
|
---|
[2415] | 191 | return p;
|
---|
| 192 | }
|
---|
[2285] | 193 | }
|
---|
| 194 | }
|
---|