1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Text;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Constraints;
|
---|
27 | using System.Diagnostics;
|
---|
28 | using HeuristicLab.Data;
|
---|
29 | using System.Linq;
|
---|
30 | using HeuristicLab.Random;
|
---|
31 | using HeuristicLab.Operators;
|
---|
32 | using HeuristicLab.Selection;
|
---|
33 | using HeuristicLab.Functions;
|
---|
34 | using System.Collections;
|
---|
35 |
|
---|
36 | namespace HeuristicLab.StructureIdentification {
|
---|
37 | internal class TreeGardener {
|
---|
38 | private IRandom random;
|
---|
39 | private GPOperatorLibrary funLibrary;
|
---|
40 | private List<IFunction> functions;
|
---|
41 |
|
---|
42 | private List<IFunction> terminals;
|
---|
43 | internal IList<IFunction> Terminals {
|
---|
44 | get { return terminals; }
|
---|
45 | }
|
---|
46 |
|
---|
47 | private List<IFunction> allFunctions;
|
---|
48 | internal IList<IFunction> AllFunctions {
|
---|
49 | get { return allFunctions; }
|
---|
50 | }
|
---|
51 |
|
---|
52 | #region constructors
|
---|
53 | internal TreeGardener(IRandom random, GPOperatorLibrary funLibrary) {
|
---|
54 | this.random = random;
|
---|
55 | this.funLibrary = funLibrary;
|
---|
56 | this.allFunctions = new List<IFunction>();
|
---|
57 | terminals = new List<IFunction>();
|
---|
58 | functions = new List<IFunction>();
|
---|
59 | // init functions and terminals based on constraints
|
---|
60 | foreach(IFunction fun in funLibrary.Group.Operators) {
|
---|
61 | int maxA, minA;
|
---|
62 | GetMinMaxArity(fun, out minA, out maxA);
|
---|
63 | if(maxA == 0) {
|
---|
64 | terminals.Add(fun);
|
---|
65 | allFunctions.Add(fun);
|
---|
66 | } else {
|
---|
67 | functions.Add(fun);
|
---|
68 | allFunctions.Add(fun);
|
---|
69 | }
|
---|
70 | }
|
---|
71 | }
|
---|
72 | #endregion
|
---|
73 |
|
---|
74 | #region random initialization
|
---|
75 | /// <summary>
|
---|
76 | /// Creates a random balanced tree with a maximal size and height. When the max-height or max-size are 1 it will return a random terminal.
|
---|
77 | /// In other cases it will return either a terminal (tree of size 1) or any other tree with a function in it's root (at least height 2).
|
---|
78 | /// </summary>
|
---|
79 | /// <param name="maxTreeSize">Maximal size of the tree (number of nodes).</param>
|
---|
80 | /// <param name="maxTreeHeight">Maximal height of the tree.</param>
|
---|
81 | /// <returns></returns>
|
---|
82 | internal IFunctionTree CreateBalancedRandomTree(int maxTreeSize, int maxTreeHeight) {
|
---|
83 | IFunctionTree root = CreateRandomRoot(maxTreeSize, maxTreeHeight);
|
---|
84 | MakeBalancedTree(root, maxTreeSize - 1, maxTreeHeight - 1);
|
---|
85 | return root;
|
---|
86 | }
|
---|
87 |
|
---|
88 | /// <summary>
|
---|
89 | /// Creates a random (unbalanced) tree with a maximal size and height. When the max-height or max-size are 1 it will return a random terminal.
|
---|
90 | /// In other cases it will return either a terminal (tree of size 1) or any other tree with a function in it's root (at least height 2).
|
---|
91 | /// </summary>
|
---|
92 | /// <param name="maxTreeSize">Maximal size of the tree (number of nodes).</param>
|
---|
93 | /// <param name="maxTreeHeight">Maximal height of the tree.</param>
|
---|
94 | /// <returns></returns>
|
---|
95 | internal IFunctionTree CreateUnbalancedRandomTree(int maxTreeSize, int maxTreeHeight) {
|
---|
96 | IFunctionTree root = CreateRandomRoot(maxTreeSize, maxTreeHeight);
|
---|
97 | MakeUnbalancedTree(root, maxTreeSize - 1, maxTreeHeight - 1);
|
---|
98 | return root;
|
---|
99 | }
|
---|
100 |
|
---|
101 | /// <summary>
|
---|
102 | /// selects a random function from allowedFunctions and creates a random (unbalanced) tree with maximal size and height.
|
---|
103 | /// </summary>
|
---|
104 | /// <param name="allowedFunctions">Set of allowed functions.</param>
|
---|
105 | /// <param name="maxTreeSize">Maximal size of the tree (number of nodes).</param>
|
---|
106 | /// <param name="maxTreeHeight">Maximal height of the tree.</param>
|
---|
107 | /// <returns>New random unbalanced tree</returns>
|
---|
108 | internal IFunctionTree CreateRandomTree(ICollection<IFunction> allowedFunctions, int maxTreeSize, int maxTreeHeight) {
|
---|
109 | // default is non-balanced trees
|
---|
110 | return CreateRandomTree(allowedFunctions, maxTreeSize, maxTreeHeight, false);
|
---|
111 | }
|
---|
112 |
|
---|
113 | /// <summary>
|
---|
114 | /// Selects a random function from allowedFunctions and creates a (un)balanced random tree with maximal size and height.
|
---|
115 | /// Max-size and max-height are not accepted as hard constraints, if all functions in the set of allowed functions would
|
---|
116 | /// lead to a bigger tree then the limits are automatically extended to guarantee that we can build a tree.
|
---|
117 | /// </summary>
|
---|
118 | /// <param name="allowedFunctions">Set of allowed functions.</param>
|
---|
119 | /// <param name="maxTreeSize">Maximal size of the tree (number of nodes).</param>
|
---|
120 | /// <param name="maxTreeHeight">Maximal height of the tree.</param>
|
---|
121 | /// <param name="balanceTrees">Flag determining whether the tree should be balanced or not.</param>
|
---|
122 | /// <returns>New random tree</returns>
|
---|
123 | internal IFunctionTree CreateRandomTree(ICollection<IFunction> allowedFunctions, int maxTreeSize, int maxTreeHeight, bool balanceTrees) {
|
---|
124 | // get the minimal needed height based on allowed functions and extend the max-height if necessary
|
---|
125 | int minTreeHeight = allowedFunctions.Select(f => ((IntData)f.GetVariable(GPOperatorLibrary.MIN_TREE_HEIGHT).Value).Data).Min();
|
---|
126 | if(minTreeHeight > maxTreeHeight)
|
---|
127 | maxTreeHeight = minTreeHeight;
|
---|
128 | // get the minimal needed size based on allowed functions and extend the max-size if necessary
|
---|
129 | int minTreeSize = allowedFunctions.Select(f => ((IntData)f.GetVariable(GPOperatorLibrary.MIN_TREE_SIZE).Value).Data).Min();
|
---|
130 | if(minTreeSize > maxTreeSize)
|
---|
131 | maxTreeSize = minTreeSize;
|
---|
132 |
|
---|
133 | // select a random value for the size and height
|
---|
134 | int treeHeight = random.Next(minTreeHeight, maxTreeHeight + 1);
|
---|
135 | int treeSize = random.Next(minTreeSize, maxTreeSize + 1);
|
---|
136 |
|
---|
137 | // filter the set of allowed functions and select only from those that fit into the given maximal size and height limits
|
---|
138 | IFunction[] possibleFunctions = allowedFunctions.Where(f => ((IntData)f.GetVariable(GPOperatorLibrary.MIN_TREE_HEIGHT).Value).Data <= treeHeight &&
|
---|
139 | ((IntData)f.GetVariable(GPOperatorLibrary.MIN_TREE_SIZE).Value).Data <= treeSize).ToArray();
|
---|
140 | IFunction selectedFunction = RandomSelect(possibleFunctions);
|
---|
141 |
|
---|
142 | // build the tree
|
---|
143 | IFunctionTree root = new FunctionTree(selectedFunction);
|
---|
144 | if(balanceTrees) {
|
---|
145 | MakeBalancedTree(root, maxTreeSize - 1, maxTreeHeight - 1);
|
---|
146 | } else {
|
---|
147 | MakeUnbalancedTree(root, maxTreeSize - 1, maxTreeHeight - 1);
|
---|
148 | }
|
---|
149 | return root;
|
---|
150 | }
|
---|
151 |
|
---|
152 | internal CompositeOperation CreateInitializationOperation(ICollection<IFunctionTree> trees, IScope scope) {
|
---|
153 | // needed for the parameter shaking operation
|
---|
154 | CompositeOperation initializationOperation = new CompositeOperation();
|
---|
155 | Scope tempScope = new Scope("Temp. initialization scope");
|
---|
156 |
|
---|
157 | var parametricTrees = trees.Where(t => t.Function.GetVariable(GPOperatorLibrary.INITIALIZATION) != null);
|
---|
158 | foreach(IFunctionTree tree in parametricTrees) {
|
---|
159 | // enqueue an initialization operation for each operator with local variables
|
---|
160 | IOperator initialization = (IOperator)tree.Function.GetVariable(GPOperatorLibrary.INITIALIZATION).Value;
|
---|
161 | Scope initScope = new Scope();
|
---|
162 | // copy the local variables into a temporary scope used for initialization
|
---|
163 | foreach(IVariable variable in tree.LocalVariables) {
|
---|
164 | initScope.AddVariable(variable);
|
---|
165 | }
|
---|
166 | tempScope.AddSubScope(initScope);
|
---|
167 | initializationOperation.AddOperation(new AtomicOperation(initialization, initScope));
|
---|
168 | }
|
---|
169 | Scope backupScope = new Scope("backup");
|
---|
170 | foreach(Scope subScope in scope.SubScopes) {
|
---|
171 | backupScope.AddSubScope(subScope);
|
---|
172 | }
|
---|
173 | scope.AddSubScope(tempScope);
|
---|
174 | scope.AddSubScope(backupScope);
|
---|
175 | // add an operation to remove the temporary scopes
|
---|
176 | initializationOperation.AddOperation(new AtomicOperation(new RightReducer(), scope));
|
---|
177 | return initializationOperation;
|
---|
178 | }
|
---|
179 | #endregion
|
---|
180 |
|
---|
181 | #region tree information gathering
|
---|
182 | internal int GetTreeSize(IFunctionTree tree) {
|
---|
183 | return 1 + tree.SubTrees.Sum(f => GetTreeSize(f));
|
---|
184 | }
|
---|
185 |
|
---|
186 | internal int GetTreeHeight(IFunctionTree tree) {
|
---|
187 | if(tree.SubTrees.Count == 0) return 1;
|
---|
188 | return 1 + tree.SubTrees.Max(f => GetTreeHeight(f));
|
---|
189 | }
|
---|
190 |
|
---|
191 | internal IFunctionTree GetRandomParentNode(IFunctionTree tree) {
|
---|
192 | List<IFunctionTree> parentNodes = new List<IFunctionTree>();
|
---|
193 |
|
---|
194 | // add null for the parent of the root node
|
---|
195 | parentNodes.Add(null);
|
---|
196 |
|
---|
197 | TreeForEach(tree, delegate(IFunctionTree possibleParentNode) {
|
---|
198 | if(possibleParentNode.SubTrees.Count > 0) {
|
---|
199 | parentNodes.Add(possibleParentNode);
|
---|
200 | }
|
---|
201 | });
|
---|
202 |
|
---|
203 | return parentNodes[random.Next(parentNodes.Count)];
|
---|
204 | }
|
---|
205 |
|
---|
206 | internal ICollection<IFunctionTree> GetAllSubTrees(IFunctionTree root) {
|
---|
207 | List<IFunctionTree> allTrees = new List<IFunctionTree>();
|
---|
208 | TreeForEach(root, t => { allTrees.Add(t); });
|
---|
209 | return allTrees;
|
---|
210 | }
|
---|
211 |
|
---|
212 | /// <summary>
|
---|
213 | /// returns the height level of branch in the tree
|
---|
214 | /// if the branch == tree => 1
|
---|
215 | /// if branch is in the sub-trees of tree => 2
|
---|
216 | /// ...
|
---|
217 | /// if branch is not found => -1
|
---|
218 | /// </summary>
|
---|
219 | /// <param name="tree">root of the function tree to process</param>
|
---|
220 | /// <param name="branch">branch that is searched in the tree</param>
|
---|
221 | /// <returns></returns>
|
---|
222 | internal int GetBranchLevel(IFunctionTree tree, IFunctionTree branch) {
|
---|
223 | return GetBranchLevelHelper(tree, branch, 1);
|
---|
224 | }
|
---|
225 |
|
---|
226 | // 'tail-recursive' helper
|
---|
227 | private int GetBranchLevelHelper(IFunctionTree tree, IFunctionTree branch, int level) {
|
---|
228 | if(branch == tree) return level;
|
---|
229 |
|
---|
230 | foreach(IFunctionTree subTree in tree.SubTrees) {
|
---|
231 | int result = GetBranchLevelHelper(subTree, branch, level + 1);
|
---|
232 | if(result != -1) return result;
|
---|
233 | }
|
---|
234 |
|
---|
235 | return -1;
|
---|
236 | }
|
---|
237 |
|
---|
238 | internal bool IsValidTree(IFunctionTree tree) {
|
---|
239 | foreach(IConstraint constraint in tree.Function.Constraints) {
|
---|
240 | if(constraint is NumberOfSubOperatorsConstraint) {
|
---|
241 | int max = ((NumberOfSubOperatorsConstraint)constraint).MaxOperators.Data;
|
---|
242 | int min = ((NumberOfSubOperatorsConstraint)constraint).MinOperators.Data;
|
---|
243 | if(tree.SubTrees.Count < min || tree.SubTrees.Count > max)
|
---|
244 | return false;
|
---|
245 | }
|
---|
246 | }
|
---|
247 | foreach(IFunctionTree subTree in tree.SubTrees) {
|
---|
248 | if(!IsValidTree(subTree)) return false;
|
---|
249 | }
|
---|
250 | return true;
|
---|
251 | }
|
---|
252 |
|
---|
253 | // returns a random branch from the specified level in the tree
|
---|
254 | internal IFunctionTree GetRandomBranch(IFunctionTree tree, int level) {
|
---|
255 | if(level == 0) return tree;
|
---|
256 | List<IFunctionTree> branches = GetBranchesAtLevel(tree, level);
|
---|
257 | return branches[random.Next(branches.Count)];
|
---|
258 | }
|
---|
259 | #endregion
|
---|
260 |
|
---|
261 | #region function information (arity, allowed childs and parents)
|
---|
262 | internal ICollection<IFunction> GetPossibleParents(List<IFunction> list) {
|
---|
263 | List<IFunction> result = new List<IFunction>();
|
---|
264 | foreach(IFunction f in functions) {
|
---|
265 | if(IsPossibleParent(f, list)) {
|
---|
266 | result.Add(f);
|
---|
267 | }
|
---|
268 | }
|
---|
269 | return result;
|
---|
270 | }
|
---|
271 |
|
---|
272 | private bool IsPossibleParent(IFunction f, List<IFunction> children) {
|
---|
273 | int minArity;
|
---|
274 | int maxArity;
|
---|
275 | GetMinMaxArity(f, out minArity, out maxArity);
|
---|
276 |
|
---|
277 | // note: we can't assume that the operators in the children list have different types!
|
---|
278 |
|
---|
279 | // when the maxArity of this function is smaller than the list of operators that
|
---|
280 | // should be included as sub-operators then it can't be a parent
|
---|
281 | if(maxArity < children.Count()) {
|
---|
282 | return false;
|
---|
283 | }
|
---|
284 | int nSlots = Math.Max(minArity, children.Count);
|
---|
285 |
|
---|
286 | SubOperatorsConstraintAnalyser analyzer = new SubOperatorsConstraintAnalyser();
|
---|
287 | analyzer.AllPossibleOperators = children.Cast<IOperator>().ToArray<IOperator>();
|
---|
288 |
|
---|
289 | List<HashSet<IFunction>> slotSets = new List<HashSet<IFunction>>();
|
---|
290 |
|
---|
291 | // we iterate through all slots for sub-trees and calculate the set of
|
---|
292 | // allowed functions for this slot.
|
---|
293 | // we only count those slots that can hold at least one of the children that we should combine
|
---|
294 | for(int slot = 0; slot < nSlots; slot++) {
|
---|
295 | HashSet<IFunction> functionSet = new HashSet<IFunction>(analyzer.GetAllowedOperators(f, slot).Cast<IFunction>());
|
---|
296 | if(functionSet.Count() > 0) {
|
---|
297 | slotSets.Add(functionSet);
|
---|
298 | }
|
---|
299 | }
|
---|
300 |
|
---|
301 | // ok at the end of this operation we know how many slots of the parent can actually
|
---|
302 | // hold one of our children.
|
---|
303 | // if the number of slots is smaller than the number of children we can be sure that
|
---|
304 | // we can never combine all children as sub-trees of the function and thus the function
|
---|
305 | // can't be a parent.
|
---|
306 | if(slotSets.Count() < children.Count()) {
|
---|
307 | return false;
|
---|
308 | }
|
---|
309 |
|
---|
310 | // finally we sort the sets by size and beginning from the first set select one
|
---|
311 | // function for the slot and thus remove it as possible sub-tree from the remaining sets.
|
---|
312 | // when we can successfully assign all available children to a slot the function is a valid parent
|
---|
313 | // when only a subset of all children can be assigned to slots the function is no valid parent
|
---|
314 | slotSets.Sort((p, q) => p.Count() - q.Count());
|
---|
315 |
|
---|
316 | int assignments = 0;
|
---|
317 | for(int i = 0; i < slotSets.Count() - 1; i++) {
|
---|
318 | if(slotSets[i].Count > 0) {
|
---|
319 | IFunction selected = slotSets[i].ElementAt(0);
|
---|
320 | assignments++;
|
---|
321 | for(int j = i + 1; j < slotSets.Count(); j++) {
|
---|
322 | slotSets[j].Remove(selected);
|
---|
323 | }
|
---|
324 | }
|
---|
325 | }
|
---|
326 |
|
---|
327 | // sanity check
|
---|
328 | if(assignments > children.Count) throw new InvalidProgramException();
|
---|
329 | return assignments == children.Count - 1;
|
---|
330 | }
|
---|
331 | internal IList<IFunction> GetAllowedParents(IFunction child, int childIndex) {
|
---|
332 | List<IFunction> parents = new List<IFunction>();
|
---|
333 | foreach(IFunction function in functions) {
|
---|
334 | ICollection<IFunction> allowedSubFunctions = GetAllowedSubFunctions(function, childIndex);
|
---|
335 | if(allowedSubFunctions.Contains(child)) {
|
---|
336 | parents.Add(function);
|
---|
337 | }
|
---|
338 | }
|
---|
339 | return parents;
|
---|
340 | }
|
---|
341 | internal bool IsTerminal(IFunction f) {
|
---|
342 | int minArity;
|
---|
343 | int maxArity;
|
---|
344 | GetMinMaxArity(f, out minArity, out maxArity);
|
---|
345 | return minArity == 0 && maxArity == 0;
|
---|
346 | }
|
---|
347 | internal IList<IFunction> GetAllowedSubFunctions(IFunction f, int index) {
|
---|
348 | if(f == null) {
|
---|
349 | return allFunctions;
|
---|
350 | } else {
|
---|
351 | ItemList slotList = (ItemList)f.GetVariable(GPOperatorLibrary.ALLOWED_SUBOPERATORS).Value;
|
---|
352 | List<IFunction> result = new List<IFunction>();
|
---|
353 | foreach(IFunction function in (ItemList)slotList[index]) {
|
---|
354 | result.Add(function);
|
---|
355 | }
|
---|
356 | return result;
|
---|
357 | }
|
---|
358 | }
|
---|
359 | internal void GetMinMaxArity(IFunction f, out int minArity, out int maxArity) {
|
---|
360 | foreach(IConstraint constraint in f.Constraints) {
|
---|
361 | NumberOfSubOperatorsConstraint theConstraint = constraint as NumberOfSubOperatorsConstraint;
|
---|
362 | if(theConstraint != null) {
|
---|
363 | minArity = theConstraint.MinOperators.Data;
|
---|
364 | maxArity = theConstraint.MaxOperators.Data;
|
---|
365 | return;
|
---|
366 | }
|
---|
367 | }
|
---|
368 | // the default arity is 2
|
---|
369 | minArity = 2;
|
---|
370 | maxArity = 2;
|
---|
371 | }
|
---|
372 | #endregion
|
---|
373 |
|
---|
374 | #region private utility methods
|
---|
375 | private IFunctionTree CreateRandomRoot(int maxTreeSize, int maxTreeHeight) {
|
---|
376 | if(maxTreeHeight == 1 || maxTreeSize == 1) {
|
---|
377 | IFunction selectedTerminal = RandomSelect(terminals);
|
---|
378 | return new FunctionTree(selectedTerminal);
|
---|
379 | } else {
|
---|
380 | IFunction[] possibleFunctions = allFunctions.Where(f => GetMinimalTreeHeight(f) <= maxTreeHeight &&
|
---|
381 | GetMinimalTreeSize(f) <= maxTreeSize).ToArray();
|
---|
382 | IFunction selectedFunction = RandomSelect(possibleFunctions);
|
---|
383 | return new FunctionTree(selectedFunction);
|
---|
384 | }
|
---|
385 | }
|
---|
386 |
|
---|
387 | private void MakeUnbalancedTree(IFunctionTree parent, int maxTreeSize, int maxTreeHeight) {
|
---|
388 | if(maxTreeHeight == 0 || maxTreeSize == 0) return;
|
---|
389 | int minArity;
|
---|
390 | int maxArity;
|
---|
391 | GetMinMaxArity(parent.Function, out minArity, out maxArity);
|
---|
392 | if(maxArity >= maxTreeSize) {
|
---|
393 | maxArity = maxTreeSize;
|
---|
394 | }
|
---|
395 | int actualArity = random.Next(minArity, maxArity + 1);
|
---|
396 | if(actualArity > 0) {
|
---|
397 | int maxSubTreeSize = maxTreeSize / actualArity;
|
---|
398 | for(int i = 0; i < actualArity; i++) {
|
---|
399 | IFunction[] possibleFunctions = GetAllowedSubFunctions(parent.Function, i).Where(f => GetMinimalTreeHeight(f) <= maxTreeHeight &&
|
---|
400 | GetMinimalTreeSize(f) <= maxSubTreeSize).ToArray();
|
---|
401 | IFunction selectedFunction = RandomSelect(possibleFunctions);
|
---|
402 | FunctionTree newSubTree = new FunctionTree(selectedFunction);
|
---|
403 | MakeUnbalancedTree(newSubTree, maxSubTreeSize - 1, maxTreeHeight - 1);
|
---|
404 | parent.InsertSubTree(i, newSubTree);
|
---|
405 | }
|
---|
406 | }
|
---|
407 | }
|
---|
408 |
|
---|
409 | // NOTE: this method doesn't build fully balanced trees because we have constraints on the
|
---|
410 | // types of possible sub-functions which can indirectly impose a limit for the depth of a given sub-tree
|
---|
411 | private void MakeBalancedTree(IFunctionTree parent, int maxTreeSize, int maxTreeHeight) {
|
---|
412 | if(maxTreeHeight == 0 || maxTreeSize == 0) return;
|
---|
413 | int minArity;
|
---|
414 | int maxArity;
|
---|
415 | GetMinMaxArity(parent.Function, out minArity, out maxArity);
|
---|
416 | if(maxArity >= maxTreeSize) {
|
---|
417 | maxArity = maxTreeSize;
|
---|
418 | }
|
---|
419 | int actualArity = random.Next(minArity, maxArity + 1);
|
---|
420 | if(actualArity > 0) {
|
---|
421 | int maxSubTreeSize = maxTreeSize / actualArity;
|
---|
422 | for(int i = 0; i < actualArity; i++) {
|
---|
423 | if(maxTreeHeight == 1 || maxSubTreeSize == 1) {
|
---|
424 | IFunction[] possibleTerminals = GetAllowedSubFunctions(parent.Function, i).Where(f => IsTerminal(f)).ToArray();
|
---|
425 | IFunction selectedTerminal = RandomSelect(possibleTerminals);
|
---|
426 | IFunctionTree newTree = new FunctionTree(selectedTerminal);
|
---|
427 | parent.InsertSubTree(i, newTree);
|
---|
428 | } else {
|
---|
429 | IFunction[] possibleFunctions = GetAllowedSubFunctions(parent.Function, i).Where(
|
---|
430 | f => GetMinimalTreeHeight(f) <= maxTreeHeight &&
|
---|
431 | GetMinimalTreeSize(f) <= maxSubTreeSize &&
|
---|
432 | !IsTerminal(f)).ToArray();
|
---|
433 | IFunction selectedFunction = RandomSelect(possibleFunctions);
|
---|
434 | FunctionTree newTree = new FunctionTree(selectedFunction);
|
---|
435 | parent.InsertSubTree(i, newTree);
|
---|
436 | MakeBalancedTree(newTree, maxSubTreeSize - 1, maxTreeHeight - 1);
|
---|
437 | }
|
---|
438 | }
|
---|
439 | }
|
---|
440 | }
|
---|
441 |
|
---|
442 | private int GetMinimalTreeHeight(IOperator op) {
|
---|
443 | return ((IntData)op.GetVariable(GPOperatorLibrary.MIN_TREE_HEIGHT).Value).Data;
|
---|
444 | }
|
---|
445 |
|
---|
446 | private int GetMinimalTreeSize(IOperator op) {
|
---|
447 | return ((IntData)op.GetVariable(GPOperatorLibrary.MIN_TREE_SIZE).Value).Data;
|
---|
448 | }
|
---|
449 |
|
---|
450 | private void TreeForEach(IFunctionTree tree, Action<IFunctionTree> action) {
|
---|
451 | action(tree);
|
---|
452 | foreach(IFunctionTree subTree in tree.SubTrees) {
|
---|
453 | TreeForEach(subTree, action);
|
---|
454 | }
|
---|
455 | }
|
---|
456 |
|
---|
457 | private List<IFunctionTree> GetBranchesAtLevel(IFunctionTree tree, int level) {
|
---|
458 | if(level == 1) return new List<IFunctionTree>(tree.SubTrees);
|
---|
459 |
|
---|
460 | List<IFunctionTree> branches = new List<IFunctionTree>();
|
---|
461 | foreach(IFunctionTree subTree in tree.SubTrees) {
|
---|
462 | branches.AddRange(GetBranchesAtLevel(subTree, level - 1));
|
---|
463 | }
|
---|
464 | return branches;
|
---|
465 | }
|
---|
466 |
|
---|
467 | private IFunction RandomSelect(IList<IFunction> functionSet) {
|
---|
468 | double[] accumulatedTickets = new double[functionSet.Count];
|
---|
469 | double ticketAccumulator = 0;
|
---|
470 | int i = 0;
|
---|
471 | // precalculate the slot-sizes
|
---|
472 | foreach(IFunction function in functionSet) {
|
---|
473 | ticketAccumulator += ((DoubleData)function.GetVariable(GPOperatorLibrary.TICKETS).Value).Data;
|
---|
474 | accumulatedTickets[i] = ticketAccumulator;
|
---|
475 | i++;
|
---|
476 | }
|
---|
477 | // throw ball
|
---|
478 | double r = random.NextDouble() * ticketAccumulator;
|
---|
479 | // find the slot that has been hit
|
---|
480 | for(i = 0; i < accumulatedTickets.Length; i++) {
|
---|
481 | if(r < accumulatedTickets[i]) return functionSet[i];
|
---|
482 | }
|
---|
483 | // sanity check
|
---|
484 | throw new InvalidProgramException(); // should never happen
|
---|
485 | }
|
---|
486 |
|
---|
487 | #endregion
|
---|
488 |
|
---|
489 | }
|
---|
490 | }
|
---|