1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Text;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Constraints;
|
---|
27 | using System.Diagnostics;
|
---|
28 | using HeuristicLab.Data;
|
---|
29 | using System.Linq;
|
---|
30 | using HeuristicLab.Random;
|
---|
31 | using HeuristicLab.Operators;
|
---|
32 | using HeuristicLab.Selection;
|
---|
33 | using HeuristicLab.Functions;
|
---|
34 | using System.Collections;
|
---|
35 |
|
---|
36 | namespace HeuristicLab.StructureIdentification {
|
---|
37 | internal class TreeGardener {
|
---|
38 | private IRandom random;
|
---|
39 | private GPOperatorLibrary funLibrary;
|
---|
40 | private List<IFunction> functions;
|
---|
41 | private List<IFunction> terminals;
|
---|
42 |
|
---|
43 | internal IList<IFunction> Terminals {
|
---|
44 | get { return terminals.AsReadOnly(); }
|
---|
45 | }
|
---|
46 | private List<IFunction> allFunctions;
|
---|
47 |
|
---|
48 | internal IList<IFunction> AllFunctions {
|
---|
49 | get { return allFunctions.AsReadOnly(); }
|
---|
50 | }
|
---|
51 |
|
---|
52 | internal TreeGardener(IRandom random, GPOperatorLibrary funLibrary) {
|
---|
53 | this.random = random;
|
---|
54 | this.funLibrary = funLibrary;
|
---|
55 | this.allFunctions = new List<IFunction>();
|
---|
56 | terminals = new List<IFunction>();
|
---|
57 | functions = new List<IFunction>();
|
---|
58 | // init functions and terminals based on constraints
|
---|
59 | foreach (IFunction fun in funLibrary.Group.Operators) {
|
---|
60 | int maxA, minA;
|
---|
61 | GetMinMaxArity(fun, out minA, out maxA);
|
---|
62 | if (maxA == 0) {
|
---|
63 | terminals.Add(fun);
|
---|
64 | } else {
|
---|
65 | functions.Add(fun);
|
---|
66 | }
|
---|
67 | }
|
---|
68 | allFunctions.AddRange(functions);
|
---|
69 | allFunctions.AddRange(terminals);
|
---|
70 | }
|
---|
71 |
|
---|
72 | #region random initialization
|
---|
73 | internal IFunctionTree CreateRandomTree(ICollection<IFunction> allowedFunctions, int maxTreeSize, int maxTreeHeight) {
|
---|
74 | // default is non-balanced trees
|
---|
75 | return CreateRandomTree(allowedFunctions, maxTreeSize, maxTreeHeight, false);
|
---|
76 | }
|
---|
77 | internal IFunctionTree CreateRandomTree(ICollection<IFunction> allowedFunctions, int maxTreeSize, int maxTreeHeight, bool balanceTrees) {
|
---|
78 |
|
---|
79 | int minTreeHeight = allowedFunctions.Select(f => ((IntData)f.GetVariable(GPOperatorLibrary.MIN_TREE_HEIGHT).Value).Data).Min();
|
---|
80 | if (minTreeHeight > maxTreeHeight)
|
---|
81 | maxTreeHeight = minTreeHeight;
|
---|
82 |
|
---|
83 | int minTreeSize = allowedFunctions.Select(f => ((IntData)f.GetVariable(GPOperatorLibrary.MIN_TREE_SIZE).Value).Data).Min();
|
---|
84 | if (minTreeSize > maxTreeSize)
|
---|
85 | maxTreeSize = minTreeSize;
|
---|
86 |
|
---|
87 | int treeHeight = random.Next(minTreeHeight, maxTreeHeight + 1);
|
---|
88 | int treeSize = random.Next(minTreeSize, maxTreeSize + 1);
|
---|
89 |
|
---|
90 | IFunction[] possibleFunctions = allowedFunctions.Where(f => ((IntData)f.GetVariable(GPOperatorLibrary.MIN_TREE_HEIGHT).Value).Data <= treeHeight &&
|
---|
91 | ((IntData)f.GetVariable(GPOperatorLibrary.MIN_TREE_SIZE).Value).Data <= treeSize).ToArray();
|
---|
92 | IFunction selectedFunction = possibleFunctions[random.Next(possibleFunctions.Length)];
|
---|
93 |
|
---|
94 | return CreateRandomTree(selectedFunction, treeSize, treeHeight, balanceTrees);
|
---|
95 | }
|
---|
96 |
|
---|
97 | internal IFunctionTree CreateRandomTree(int maxTreeSize, int maxTreeHeight, bool balanceTrees) {
|
---|
98 | if (balanceTrees) {
|
---|
99 | if (maxTreeHeight == 1 || maxTreeSize==1) {
|
---|
100 | IFunction selectedTerminal = terminals[random.Next(terminals.Count())];
|
---|
101 | return new FunctionTree(selectedTerminal);
|
---|
102 | } else {
|
---|
103 | IFunction[] possibleFunctions = functions.Where(f => GetMinimalTreeHeight(f) <= maxTreeHeight &&
|
---|
104 | GetMinimalTreeSize(f) <= maxTreeSize).ToArray();
|
---|
105 | IFunction selectedFunction = possibleFunctions[random.Next(possibleFunctions.Length)];
|
---|
106 | FunctionTree root = new FunctionTree(selectedFunction);
|
---|
107 | MakeBalancedTree(root, maxTreeSize - 1, maxTreeHeight - 1);
|
---|
108 | return root;
|
---|
109 | }
|
---|
110 |
|
---|
111 | } else {
|
---|
112 | IFunction[] possibleFunctions = allFunctions.Where(f => GetMinimalTreeHeight(f) <= maxTreeHeight &&
|
---|
113 | GetMinimalTreeSize(f) <= maxTreeSize).ToArray();
|
---|
114 | IFunction selectedFunction = possibleFunctions[random.Next(possibleFunctions.Length)];
|
---|
115 | FunctionTree root = new FunctionTree(selectedFunction);
|
---|
116 | MakeUnbalancedTree(root, maxTreeSize - 1, maxTreeHeight - 1);
|
---|
117 | return root;
|
---|
118 | }
|
---|
119 | }
|
---|
120 |
|
---|
121 | internal IFunctionTree CreateRandomTree(IFunction rootFunction, int maxTreeSize, int maxTreeHeight, bool balanceTrees) {
|
---|
122 | IFunctionTree root = new FunctionTree(rootFunction);
|
---|
123 | if (balanceTrees) {
|
---|
124 | MakeBalancedTree(root, maxTreeSize - 1, maxTreeHeight - 1);
|
---|
125 | } else {
|
---|
126 | MakeUnbalancedTree(root, maxTreeSize - 1, maxTreeHeight - 1);
|
---|
127 | }
|
---|
128 | if (GetTreeSize(root) > maxTreeSize ||
|
---|
129 | GetTreeHeight(root) > maxTreeHeight) {
|
---|
130 | throw new InvalidProgramException();
|
---|
131 | }
|
---|
132 | return root;
|
---|
133 | }
|
---|
134 |
|
---|
135 |
|
---|
136 | private void MakeUnbalancedTree(IFunctionTree parent, int maxTreeSize, int maxTreeHeight) {
|
---|
137 | if (maxTreeHeight == 0 || maxTreeSize == 0) return;
|
---|
138 | int minArity;
|
---|
139 | int maxArity;
|
---|
140 | GetMinMaxArity(parent.Function, out minArity, out maxArity);
|
---|
141 | if (maxArity >= maxTreeSize) {
|
---|
142 | maxArity = maxTreeSize;
|
---|
143 | }
|
---|
144 | int actualArity = random.Next(minArity, maxArity + 1);
|
---|
145 | if (actualArity > 0) {
|
---|
146 | int maxSubTreeSize = maxTreeSize / actualArity;
|
---|
147 | for (int i = 0; i < actualArity; i++) {
|
---|
148 | IFunction[] possibleFunctions = GetAllowedSubFunctions(parent.Function, i).Where(f => GetMinimalTreeHeight(f) <= maxTreeHeight &&
|
---|
149 | GetMinimalTreeSize(f) <= maxSubTreeSize).ToArray();
|
---|
150 | IFunction selectedFunction = possibleFunctions[random.Next(possibleFunctions.Length)];
|
---|
151 | FunctionTree newSubTree = new FunctionTree(selectedFunction);
|
---|
152 | MakeUnbalancedTree(newSubTree, maxSubTreeSize - 1, maxTreeHeight - 1);
|
---|
153 | parent.InsertSubTree(i, newSubTree);
|
---|
154 | }
|
---|
155 | }
|
---|
156 | }
|
---|
157 |
|
---|
158 | // NOTE: this method doesn't build fully balanced trees because we have constraints on the
|
---|
159 | // types of possible sub-functions which can indirectly impose a limit for the depth of a given sub-tree
|
---|
160 | private void MakeBalancedTree(IFunctionTree parent, int maxTreeSize, int maxTreeHeight) {
|
---|
161 | if (maxTreeHeight == 0 || maxTreeSize == 0) return; // should never happen anyway
|
---|
162 | int minArity;
|
---|
163 | int maxArity;
|
---|
164 | GetMinMaxArity(parent.Function, out minArity, out maxArity);
|
---|
165 | if (maxArity >= maxTreeSize) {
|
---|
166 | maxArity = maxTreeSize;
|
---|
167 | }
|
---|
168 | int actualArity = random.Next(minArity, maxArity + 1);
|
---|
169 | if (actualArity > 0) {
|
---|
170 | int maxSubTreeSize = maxTreeSize / actualArity;
|
---|
171 | for (int i = 0; i < actualArity; i++) {
|
---|
172 | if (maxTreeHeight == 1 || maxSubTreeSize == 1) {
|
---|
173 | IFunction[] possibleTerminals = GetAllowedSubFunctions(parent.Function, i).Where(
|
---|
174 | f => GetMinimalTreeHeight(f) <= maxTreeHeight &&
|
---|
175 | GetMinimalTreeSize(f) <= maxSubTreeSize &&
|
---|
176 | IsTerminal(f)).ToArray();
|
---|
177 | IFunction selectedTerminal = possibleTerminals[random.Next(possibleTerminals.Length)];
|
---|
178 | IFunctionTree newTree = new FunctionTree(selectedTerminal);
|
---|
179 | parent.InsertSubTree(i, newTree);
|
---|
180 | } else {
|
---|
181 | IFunction[] possibleFunctions = GetAllowedSubFunctions(parent.Function, i).Where(
|
---|
182 | f => GetMinimalTreeHeight(f) <= maxTreeHeight &&
|
---|
183 | GetMinimalTreeSize(f) <= maxSubTreeSize &&
|
---|
184 | !IsTerminal(f)).ToArray();
|
---|
185 | IFunction selectedFunction = possibleFunctions[random.Next(possibleFunctions.Length)];
|
---|
186 | FunctionTree newTree = new FunctionTree(selectedFunction);
|
---|
187 | parent.InsertSubTree(i, newTree);
|
---|
188 | MakeBalancedTree(newTree, maxSubTreeSize - 1, maxTreeHeight - 1);
|
---|
189 | }
|
---|
190 | }
|
---|
191 | }
|
---|
192 | }
|
---|
193 |
|
---|
194 | internal CompositeOperation CreateInitializationOperation(ICollection<IFunctionTree> trees, IScope scope) {
|
---|
195 | // needed for the parameter shaking operation
|
---|
196 | CompositeOperation initializationOperation = new CompositeOperation();
|
---|
197 | Scope tempScope = new Scope("Temp. initialization scope");
|
---|
198 |
|
---|
199 | var parametricTrees = trees.Where(t => t.Function.GetVariable(GPOperatorLibrary.INITIALIZATION) != null);
|
---|
200 |
|
---|
201 | foreach (IFunctionTree tree in parametricTrees) {
|
---|
202 | // enqueue an initialization operation for each operator with local variables
|
---|
203 | IOperator initialization = (IOperator)tree.Function.GetVariable(GPOperatorLibrary.INITIALIZATION).Value;
|
---|
204 | Scope initScope = new Scope();
|
---|
205 |
|
---|
206 | // copy the local variables into a temporary scope used for initialization
|
---|
207 | foreach (IVariable variable in tree.LocalVariables) {
|
---|
208 | initScope.AddVariable(variable);
|
---|
209 | }
|
---|
210 |
|
---|
211 | tempScope.AddSubScope(initScope);
|
---|
212 | initializationOperation.AddOperation(new AtomicOperation(initialization, initScope));
|
---|
213 | }
|
---|
214 |
|
---|
215 | Scope backupScope = new Scope("backup");
|
---|
216 | foreach (Scope subScope in scope.SubScopes) {
|
---|
217 | backupScope.AddSubScope(subScope);
|
---|
218 | }
|
---|
219 |
|
---|
220 | scope.AddSubScope(tempScope);
|
---|
221 | scope.AddSubScope(backupScope);
|
---|
222 |
|
---|
223 | // add an operation to remove the temporary scopes
|
---|
224 | initializationOperation.AddOperation(new AtomicOperation(new RightReducer(), scope));
|
---|
225 | return initializationOperation;
|
---|
226 | }
|
---|
227 | #endregion
|
---|
228 |
|
---|
229 | #region tree information gathering
|
---|
230 | internal int GetTreeSize(IFunctionTree tree) {
|
---|
231 | return 1 + tree.SubTrees.Sum(f => GetTreeSize(f));
|
---|
232 | }
|
---|
233 |
|
---|
234 | internal int GetTreeHeight(IFunctionTree tree) {
|
---|
235 | if (tree.SubTrees.Count == 0) return 1;
|
---|
236 | return 1 + tree.SubTrees.Max(f => GetTreeHeight(f));
|
---|
237 | }
|
---|
238 |
|
---|
239 | internal IFunctionTree GetRandomParentNode(IFunctionTree tree) {
|
---|
240 | List<IFunctionTree> parentNodes = new List<IFunctionTree>();
|
---|
241 |
|
---|
242 | // add null for the parent of the root node
|
---|
243 | parentNodes.Add(null);
|
---|
244 |
|
---|
245 | TreeForEach(tree, delegate(IFunctionTree possibleParentNode) {
|
---|
246 | if (possibleParentNode.SubTrees.Count > 0) {
|
---|
247 | parentNodes.Add(possibleParentNode);
|
---|
248 | }
|
---|
249 | });
|
---|
250 |
|
---|
251 | return parentNodes[random.Next(parentNodes.Count)];
|
---|
252 | }
|
---|
253 |
|
---|
254 | internal IList<IFunction> GetAllowedSubFunctions(IFunction f, int index) {
|
---|
255 | if (f == null) {
|
---|
256 | return allFunctions;
|
---|
257 | } else {
|
---|
258 | ItemList slotList = (ItemList)f.GetVariable(GPOperatorLibrary.ALLOWED_SUBOPERATORS).Value;
|
---|
259 | List<IFunction> result = new List<IFunction>();
|
---|
260 | foreach(IFunction function in (ItemList)slotList[index]) {
|
---|
261 | result.Add(function);
|
---|
262 | }
|
---|
263 | return result;
|
---|
264 | }
|
---|
265 | }
|
---|
266 | internal void GetMinMaxArity(IFunction f, out int minArity, out int maxArity) {
|
---|
267 | foreach (IConstraint constraint in f.Constraints) {
|
---|
268 | NumberOfSubOperatorsConstraint theConstraint = constraint as NumberOfSubOperatorsConstraint;
|
---|
269 | if (theConstraint != null) {
|
---|
270 | minArity = theConstraint.MinOperators.Data;
|
---|
271 | maxArity = theConstraint.MaxOperators.Data;
|
---|
272 | return;
|
---|
273 | }
|
---|
274 | }
|
---|
275 | // the default arity is 2
|
---|
276 | minArity = 2;
|
---|
277 | maxArity = 2;
|
---|
278 | }
|
---|
279 | internal bool IsTerminal(IFunction f) {
|
---|
280 | int minArity;
|
---|
281 | int maxArity;
|
---|
282 | GetMinMaxArity(f, out minArity, out maxArity);
|
---|
283 | return minArity == 0 && maxArity == 0;
|
---|
284 | }
|
---|
285 |
|
---|
286 | internal IList<IFunction> GetAllowedParents(IFunction child, int childIndex) {
|
---|
287 | List<IFunction> parents = new List<IFunction>();
|
---|
288 | foreach (IFunction function in functions) {
|
---|
289 | ICollection<IFunction> allowedSubFunctions = GetAllowedSubFunctions(function, childIndex);
|
---|
290 | if (allowedSubFunctions.Contains(child)) {
|
---|
291 | parents.Add(function);
|
---|
292 | }
|
---|
293 | }
|
---|
294 | return parents;
|
---|
295 | }
|
---|
296 |
|
---|
297 | internal ICollection<IFunctionTree> GetAllSubTrees(IFunctionTree root) {
|
---|
298 | List<IFunctionTree> allTrees = new List<IFunctionTree>();
|
---|
299 | TreeForEach(root, t => { allTrees.Add(t); });
|
---|
300 | return allTrees;
|
---|
301 | }
|
---|
302 |
|
---|
303 | /// <summary>
|
---|
304 | /// returns the height level of branch in the tree
|
---|
305 | /// if the branch == tree => 1
|
---|
306 | /// if branch is in the sub-trees of tree => 2
|
---|
307 | /// ...
|
---|
308 | /// if branch is not found => -1
|
---|
309 | /// </summary>
|
---|
310 | /// <param name="tree">root of the function tree to process</param>
|
---|
311 | /// <param name="branch">branch that is searched in the tree</param>
|
---|
312 | /// <returns></returns>
|
---|
313 | internal int GetBranchLevel(IFunctionTree tree, IFunctionTree branch) {
|
---|
314 | return GetBranchLevelHelper(tree, branch, 1);
|
---|
315 | }
|
---|
316 |
|
---|
317 | // 'tail-recursive' helper
|
---|
318 | private int GetBranchLevelHelper(IFunctionTree tree, IFunctionTree branch, int level) {
|
---|
319 | if (branch == tree) return level;
|
---|
320 |
|
---|
321 | foreach (IFunctionTree subTree in tree.SubTrees) {
|
---|
322 | int result = GetBranchLevelHelper(subTree, branch, level + 1);
|
---|
323 | if (result != -1) return result;
|
---|
324 | }
|
---|
325 |
|
---|
326 | return -1;
|
---|
327 | }
|
---|
328 |
|
---|
329 | internal bool IsValidTree(IFunctionTree tree) {
|
---|
330 | foreach(IConstraint constraint in tree.Function.Constraints) {
|
---|
331 | if(constraint is NumberOfSubOperatorsConstraint) {
|
---|
332 | int max = ((NumberOfSubOperatorsConstraint)constraint).MaxOperators.Data;
|
---|
333 | int min = ((NumberOfSubOperatorsConstraint)constraint).MinOperators.Data;
|
---|
334 | if(tree.SubTrees.Count < min || tree.SubTrees.Count > max)
|
---|
335 | return false;
|
---|
336 | }
|
---|
337 | }
|
---|
338 | foreach(IFunctionTree subTree in tree.SubTrees) {
|
---|
339 | if(!IsValidTree(subTree)) return false;
|
---|
340 | }
|
---|
341 | return true;
|
---|
342 | }
|
---|
343 |
|
---|
344 | // returns a random branch from the specified level in the tree
|
---|
345 | internal IFunctionTree GetRandomBranch(IFunctionTree tree, int level) {
|
---|
346 | if (level == 0) return tree;
|
---|
347 | List<IFunctionTree> branches = GetBranchesAtLevel(tree, level);
|
---|
348 | return branches[random.Next(branches.Count)];
|
---|
349 | }
|
---|
350 | #endregion
|
---|
351 |
|
---|
352 | #region private utility methods
|
---|
353 |
|
---|
354 | private int GetMinimalTreeHeight(IOperator op) {
|
---|
355 | return ((IntData)op.GetVariable(GPOperatorLibrary.MIN_TREE_HEIGHT).Value).Data;
|
---|
356 | }
|
---|
357 |
|
---|
358 | private int GetMinimalTreeSize(IOperator op) {
|
---|
359 | return ((IntData)op.GetVariable(GPOperatorLibrary.MIN_TREE_SIZE).Value).Data;
|
---|
360 | }
|
---|
361 |
|
---|
362 | private void TreeForEach(IFunctionTree tree, Action<IFunctionTree> action) {
|
---|
363 | action(tree);
|
---|
364 | foreach (IFunctionTree subTree in tree.SubTrees) {
|
---|
365 | TreeForEach(subTree, action);
|
---|
366 | }
|
---|
367 | }
|
---|
368 |
|
---|
369 | private List<IFunctionTree> GetBranchesAtLevel(IFunctionTree tree, int level) {
|
---|
370 | if (level == 1) return new List<IFunctionTree>(tree.SubTrees);
|
---|
371 |
|
---|
372 | List<IFunctionTree> branches = new List<IFunctionTree>();
|
---|
373 | foreach (IFunctionTree subTree in tree.SubTrees) {
|
---|
374 | branches.AddRange(GetBranchesAtLevel(subTree, level - 1));
|
---|
375 | }
|
---|
376 | return branches;
|
---|
377 | }
|
---|
378 |
|
---|
379 |
|
---|
380 | #endregion
|
---|
381 |
|
---|
382 | internal ICollection<IFunction> GetPossibleParents(List<IFunction> list) {
|
---|
383 | List<IFunction> result = new List<IFunction>();
|
---|
384 | foreach (IFunction f in functions) {
|
---|
385 | if (IsPossibleParent(f, list)) {
|
---|
386 | result.Add(f);
|
---|
387 | }
|
---|
388 | }
|
---|
389 | return result;
|
---|
390 | }
|
---|
391 |
|
---|
392 | private bool IsPossibleParent(IFunction f, List<IFunction> children) {
|
---|
393 | int minArity;
|
---|
394 | int maxArity;
|
---|
395 | GetMinMaxArity(f, out minArity, out maxArity);
|
---|
396 |
|
---|
397 | // note: we can't assume that the operators in the children list have different types!
|
---|
398 |
|
---|
399 | // when the maxArity of this function is smaller than the list of operators that
|
---|
400 | // should be included as sub-operators then it can't be a parent
|
---|
401 | if (maxArity < children.Count()) {
|
---|
402 | return false;
|
---|
403 | }
|
---|
404 | int nSlots = Math.Max(minArity, children.Count);
|
---|
405 |
|
---|
406 | SubOperatorsConstraintAnalyser analyzer = new SubOperatorsConstraintAnalyser();
|
---|
407 | analyzer.AllPossibleOperators = children.Cast<IOperator>().ToArray<IOperator>();
|
---|
408 |
|
---|
409 | List<HashSet<IFunction>> slotSets = new List<HashSet<IFunction>>();
|
---|
410 |
|
---|
411 | // we iterate through all slots for sub-trees and calculate the set of
|
---|
412 | // allowed functions for this slot.
|
---|
413 | // we only count those slots that can hold at least one of the children that we should combine
|
---|
414 | for (int slot = 0; slot < nSlots; slot++) {
|
---|
415 | HashSet<IFunction> functionSet = new HashSet<IFunction>(analyzer.GetAllowedOperators(f, slot).Cast<IFunction>());
|
---|
416 | if (functionSet.Count() > 0) {
|
---|
417 | slotSets.Add(functionSet);
|
---|
418 | }
|
---|
419 | }
|
---|
420 |
|
---|
421 | // ok at the end of this operation we know how many slots of the parent can actually
|
---|
422 | // hold one of our children.
|
---|
423 | // if the number of slots is smaller than the number of children we can be sure that
|
---|
424 | // we can never combine all children as sub-trees of the function and thus the function
|
---|
425 | // can't be a parent.
|
---|
426 | if (slotSets.Count() < children.Count()) {
|
---|
427 | return false;
|
---|
428 | }
|
---|
429 |
|
---|
430 | // finally we sort the sets by size and beginning from the first set select one
|
---|
431 | // function for the slot and thus remove it as possible sub-tree from the remaining sets.
|
---|
432 | // when we can successfully assign all available children to a slot the function is a valid parent
|
---|
433 | // when only a subset of all children can be assigned to slots the function is no valid parent
|
---|
434 | slotSets.Sort((p, q) => p.Count() - q.Count());
|
---|
435 |
|
---|
436 | int assignments = 0;
|
---|
437 | for (int i = 0; i < slotSets.Count() - 1; i++) {
|
---|
438 | if (slotSets[i].Count > 0) {
|
---|
439 | IFunction selected = slotSets[i].ElementAt(0);
|
---|
440 | assignments++;
|
---|
441 | for (int j = i + 1; j < slotSets.Count(); j++) {
|
---|
442 | slotSets[j].Remove(selected);
|
---|
443 | }
|
---|
444 | }
|
---|
445 | }
|
---|
446 |
|
---|
447 | // sanity check
|
---|
448 | if (assignments > children.Count) throw new InvalidProgramException();
|
---|
449 | return assignments == children.Count - 1;
|
---|
450 | }
|
---|
451 | }
|
---|
452 | }
|
---|