1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Text;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Operators;
|
---|
29 | using HeuristicLab.DataAnalysis;
|
---|
30 | using HeuristicLab.Functions;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.StructureIdentification {
|
---|
33 | public class VarianceAccountedForEvaluator : OperatorBase {
|
---|
34 | public override string Description {
|
---|
35 | get { return @"Evaluates 'OperatorTree' for samples 'FirstSampleIndex' - 'LastSampleIndex' (inclusive) and calculates
|
---|
36 | the variance-accounted-for quality measure for the estimated values vs. the real values of 'TargetVariable'.
|
---|
37 |
|
---|
38 | The Variance Accounted For (VAF) function is computed as
|
---|
39 | VAF(y,y') = ( 1 - var(y-y')/var(y) )
|
---|
40 | where y' denotes the predicted / modelled values for y and var(x) the variance of a signal x."; }
|
---|
41 | }
|
---|
42 |
|
---|
43 | /// <summary>
|
---|
44 | /// The Variance Accounted For (VAF) function calculates is computed as
|
---|
45 | /// VAF(y,y') = ( 1 - var(y-y')/var(y) )
|
---|
46 | /// where y' denotes the predicted / modelled values for y and var(x) the variance of a signal x.
|
---|
47 | /// </summary>
|
---|
48 | public VarianceAccountedForEvaluator()
|
---|
49 | : base() {
|
---|
50 | AddVariableInfo(new VariableInfo("OperatorTree", "The function tree that should be evaluated", typeof(IFunction), VariableKind.In));
|
---|
51 | AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In));
|
---|
52 | AddVariableInfo(new VariableInfo("TargetVariable", "Index of the target variable in the dataset", typeof(IntData), VariableKind.In));
|
---|
53 | AddVariableInfo(new VariableInfo("FirstSampleIndex", "Index of the first row of the dataset on which the function should be evaluated", typeof(IntData), VariableKind.In));
|
---|
54 | AddVariableInfo(new VariableInfo("LastSampleIndex", "Index of the last row of the dataset on which the function should be evaluated (inclusive)", typeof(IntData), VariableKind.In));
|
---|
55 | AddVariableInfo(new VariableInfo("PunishmentFactor", "Punishment factor for invalid estimations", typeof(DoubleData), VariableKind.In));
|
---|
56 | AddVariableInfo(new VariableInfo("UseEstimatedTargetValues", "When the function tree contains the target variable this variable determines " +
|
---|
57 | "if we should use the estimated or the original values of the target variable in the evaluation", typeof(BoolData), VariableKind.In));
|
---|
58 | AddVariableInfo(new VariableInfo("Quality", "Variance accounted for quality of the model", typeof(DoubleData), VariableKind.New));
|
---|
59 |
|
---|
60 | }
|
---|
61 |
|
---|
62 |
|
---|
63 | private double[] originalTargetVariableValues = new double[1];
|
---|
64 | private double[] errors = new double[1];
|
---|
65 |
|
---|
66 | public override IOperation Apply(IScope scope) {
|
---|
67 |
|
---|
68 | int firstSampleIndex = GetVariableValue<IntData>("FirstSampleIndex", scope, true).Data;
|
---|
69 | int lastSampleIndex = GetVariableValue<IntData>("LastSampleIndex", scope, true).Data;
|
---|
70 |
|
---|
71 | if(lastSampleIndex < firstSampleIndex) {
|
---|
72 | throw new InvalidProgramException();
|
---|
73 | }
|
---|
74 |
|
---|
75 | IFunction function = GetVariableValue<IFunction>("OperatorTree", scope, true);
|
---|
76 |
|
---|
77 | Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
|
---|
78 |
|
---|
79 | int targetVariable = GetVariableValue<IntData>("TargetVariable", scope, true).Data;
|
---|
80 | bool useEstimatedTargetValues = GetVariableValue<BoolData>("UseEstimatedTargetValues", scope, true).Data;
|
---|
81 | double punishmentFactor = GetVariableValue<DoubleData>("PunishmentFactor", scope, true).Data;
|
---|
82 |
|
---|
83 | if(originalTargetVariableValues.Length != lastSampleIndex - firstSampleIndex + 1) {
|
---|
84 | originalTargetVariableValues = new double[lastSampleIndex - firstSampleIndex + 1];
|
---|
85 | errors = new double[lastSampleIndex - firstSampleIndex + 1];
|
---|
86 | }
|
---|
87 |
|
---|
88 | double maximumPunishment = punishmentFactor * dataset.GetRange(targetVariable, firstSampleIndex, lastSampleIndex);
|
---|
89 |
|
---|
90 | double targetMean = dataset.GetMean(targetVariable, firstSampleIndex, lastSampleIndex);
|
---|
91 |
|
---|
92 | for(int sample = firstSampleIndex; sample <= lastSampleIndex; sample++) {
|
---|
93 |
|
---|
94 | double estimated = function.Evaluate(dataset, sample);
|
---|
95 | double original = dataset.GetValue(sample, targetVariable);
|
---|
96 |
|
---|
97 | if(!double.IsNaN(original) && !double.IsInfinity(original)) {
|
---|
98 | if(double.IsNaN(estimated) || double.IsInfinity(estimated))
|
---|
99 | estimated = targetMean + maximumPunishment;
|
---|
100 | else if(estimated > (targetMean + maximumPunishment))
|
---|
101 | estimated = targetMean + maximumPunishment;
|
---|
102 | else if(estimated < (targetMean - maximumPunishment))
|
---|
103 | estimated = targetMean - maximumPunishment;
|
---|
104 | }
|
---|
105 |
|
---|
106 | errors[sample-firstSampleIndex] = original - estimated;
|
---|
107 | originalTargetVariableValues[sample-firstSampleIndex] = original;
|
---|
108 | if(useEstimatedTargetValues) {
|
---|
109 | dataset.SetValue(sample, targetVariable, estimated);
|
---|
110 | }
|
---|
111 | }
|
---|
112 |
|
---|
113 | double errorsVariance = Statistics.Variance(errors);
|
---|
114 | double originalsVariance = Statistics.Variance(originalTargetVariableValues);
|
---|
115 | double quality = 1 - errorsVariance / originalsVariance;
|
---|
116 |
|
---|
117 | if(double.IsNaN(quality) || double.IsInfinity(quality)) {
|
---|
118 | quality = double.MaxValue;
|
---|
119 | }
|
---|
120 |
|
---|
121 | if(useEstimatedTargetValues) {
|
---|
122 | // restore original values of the target variable
|
---|
123 | for(int sample = firstSampleIndex; sample <= lastSampleIndex; sample++) {
|
---|
124 | dataset.SetValue(sample, targetVariable, originalTargetVariableValues[sample - firstSampleIndex]);
|
---|
125 | }
|
---|
126 | }
|
---|
127 |
|
---|
128 | scope.AddVariable(new HeuristicLab.Core.Variable("Quality", new DoubleData(quality)));
|
---|
129 | return null;
|
---|
130 | }
|
---|
131 | }
|
---|
132 | }
|
---|