[2] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Text;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Operators;
|
---|
| 29 | using HeuristicLab.DataAnalysis;
|
---|
| 30 | using HeuristicLab.Functions;
|
---|
| 31 |
|
---|
| 32 | namespace HeuristicLab.StructureIdentification {
|
---|
[128] | 33 | public class VarianceAccountedForEvaluator : GPEvaluatorBase {
|
---|
[482] | 34 | private DoubleData vaf;
|
---|
[2] | 35 | public override string Description {
|
---|
[128] | 36 | get {
|
---|
[155] | 37 | return @"Evaluates 'FunctionTree' for all samples of 'DataSet' and calculates
|
---|
[2] | 38 | the variance-accounted-for quality measure for the estimated values vs. the real values of 'TargetVariable'.
|
---|
| 39 |
|
---|
| 40 | The Variance Accounted For (VAF) function is computed as
|
---|
| 41 | VAF(y,y') = ( 1 - var(y-y')/var(y) )
|
---|
[128] | 42 | where y' denotes the predicted / modelled values for y and var(x) the variance of a signal x.";
|
---|
| 43 | }
|
---|
[2] | 44 | }
|
---|
| 45 |
|
---|
| 46 | /// <summary>
|
---|
| 47 | /// The Variance Accounted For (VAF) function calculates is computed as
|
---|
| 48 | /// VAF(y,y') = ( 1 - var(y-y')/var(y) )
|
---|
| 49 | /// where y' denotes the predicted / modelled values for y and var(x) the variance of a signal x.
|
---|
| 50 | /// </summary>
|
---|
| 51 | public VarianceAccountedForEvaluator()
|
---|
| 52 | : base() {
|
---|
[482] | 53 | AddVariableInfo(new VariableInfo("VAF", "The variance-accounted-for quality of the model", typeof(DoubleData), VariableKind.New));
|
---|
| 54 |
|
---|
[2] | 55 | }
|
---|
| 56 |
|
---|
[482] | 57 | public override IOperation Apply(IScope scope) {
|
---|
| 58 | vaf = GetVariableValue<DoubleData>("VAF", scope, false, false);
|
---|
| 59 | if(vaf == null) {
|
---|
| 60 | vaf = new DoubleData();
|
---|
| 61 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("VAF"), vaf));
|
---|
| 62 | }
|
---|
[2] | 63 |
|
---|
[482] | 64 | return base.Apply(scope);
|
---|
| 65 | }
|
---|
| 66 |
|
---|
| 67 | public override void Evaluate(int start, int end) {
|
---|
[479] | 68 | int nSamples = end - start;
|
---|
| 69 | double[] errors = new double[nSamples];
|
---|
| 70 | double[] originalTargetVariableValues = new double[nSamples];
|
---|
| 71 | for(int sample = start; sample < end; sample++) {
|
---|
| 72 | double estimated = GetEstimatedValue(sample);
|
---|
| 73 | double original = GetOriginalValue(sample);
|
---|
[480] | 74 | SetOriginalValue(sample, estimated);
|
---|
[2] | 75 | if(!double.IsNaN(original) && !double.IsInfinity(original)) {
|
---|
[479] | 76 | errors[sample - start] = original - estimated;
|
---|
| 77 | originalTargetVariableValues[sample - start] = original;
|
---|
[2] | 78 | }
|
---|
| 79 | }
|
---|
| 80 | double errorsVariance = Statistics.Variance(errors);
|
---|
| 81 | double originalsVariance = Statistics.Variance(originalTargetVariableValues);
|
---|
| 82 | double quality = 1 - errorsVariance / originalsVariance;
|
---|
| 83 |
|
---|
| 84 | if(double.IsNaN(quality) || double.IsInfinity(quality)) {
|
---|
| 85 | quality = double.MaxValue;
|
---|
| 86 | }
|
---|
[482] | 87 | vaf.Data = quality;
|
---|
[2] | 88 | }
|
---|
| 89 | }
|
---|
| 90 | }
|
---|