[369] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Text;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Operators;
|
---|
| 29 | using HeuristicLab.Functions;
|
---|
| 30 | using HeuristicLab.DataAnalysis;
|
---|
| 31 |
|
---|
| 32 | namespace HeuristicLab.StructureIdentification {
|
---|
| 33 | public class TheilInequalityCoefficientEvaluator : GPEvaluatorBase {
|
---|
[479] | 34 | private bool differential;
|
---|
[482] | 35 | private DoubleData theilInequaliy;
|
---|
[369] | 36 | public override string Description {
|
---|
| 37 | get {
|
---|
| 38 | return @"Evaluates 'FunctionTree' for all samples of 'Dataset' and calculates
|
---|
| 39 | the 'Theil inequality coefficient (scale invariant)' of estimated values vs. real values of 'TargetVariable'.";
|
---|
| 40 | }
|
---|
| 41 | }
|
---|
| 42 |
|
---|
| 43 | public TheilInequalityCoefficientEvaluator()
|
---|
| 44 | : base() {
|
---|
[395] | 45 | AddVariableInfo(new VariableInfo("Differential", "Wether to calculate the coefficient for the predicted change vs. original change or for the absolute prediction vs. original value", typeof(BoolData), VariableKind.In));
|
---|
[482] | 46 | AddVariableInfo(new VariableInfo("TheilInequalityCoefficient", "Theil's inequality coefficient of the model", typeof(DoubleData), VariableKind.New));
|
---|
| 47 |
|
---|
[369] | 48 | }
|
---|
| 49 |
|
---|
[479] | 50 | public override IOperation Apply(IScope scope) {
|
---|
| 51 | differential = GetVariableValue<BoolData>("Differential", scope, true).Data;
|
---|
[482] | 52 | theilInequaliy = GetVariableValue<DoubleData>("TheilInequalityCoefficient", scope, false, false);
|
---|
| 53 | if(theilInequaliy == null) {
|
---|
| 54 | theilInequaliy = new DoubleData();
|
---|
| 55 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("TheilInequalityCoefficient"), theilInequaliy));
|
---|
| 56 | }
|
---|
| 57 |
|
---|
[479] | 58 | return base.Apply(scope);
|
---|
| 59 | }
|
---|
| 60 |
|
---|
[482] | 61 | public override void Evaluate(int start, int end) {
|
---|
[369] | 62 | double errorsSquaredSum = 0.0;
|
---|
| 63 | double estimatedSquaredSum = 0.0;
|
---|
| 64 | double originalSquaredSum = 0.0;
|
---|
[479] | 65 | for(int sample = start; sample < end; sample++) {
|
---|
[395] | 66 | double prevValue = 0.0;
|
---|
[479] | 67 | if(differential) prevValue = GetOriginalValue(sample - 1);
|
---|
| 68 | double estimatedChange = GetEstimatedValue(sample) - prevValue;
|
---|
| 69 | double originalChange = GetOriginalValue(sample) - prevValue;
|
---|
[482] | 70 | SetOriginalValue(sample, estimatedChange + prevValue);
|
---|
[369] | 71 | if(!double.IsNaN(originalChange) && !double.IsInfinity(originalChange)) {
|
---|
| 72 | double error = estimatedChange - originalChange;
|
---|
| 73 | errorsSquaredSum += error * error;
|
---|
| 74 | estimatedSquaredSum += estimatedChange * estimatedChange;
|
---|
| 75 | originalSquaredSum += originalChange * originalChange;
|
---|
| 76 | }
|
---|
| 77 | }
|
---|
[479] | 78 | int nSamples = end - start;
|
---|
[400] | 79 | double quality = Math.Sqrt(errorsSquaredSum / nSamples) / (Math.Sqrt(estimatedSquaredSum / nSamples) + Math.Sqrt(originalSquaredSum / nSamples));
|
---|
[479] | 80 | if(double.IsNaN(quality) || double.IsInfinity(quality))
|
---|
[369] | 81 | quality = double.MaxValue;
|
---|
[482] | 82 | theilInequaliy.Data = quality;
|
---|
[369] | 83 | }
|
---|
| 84 | }
|
---|
| 85 | }
|
---|