Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.StructureIdentification/Evaluation/TheilInequalityCoefficientEvaluator.cs @ 479

Last change on this file since 479 was 479, checked in by gkronber, 16 years ago

implemented #242 (All GP evaluators should support the 'UseEstimatedTargetValues' switch for autoregressive modelling).
Also used the chance to remove a lot of the code duplication and thus improve the readability of all GP evaluators.

File size: 3.1 KB
RevLine 
[369]1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Operators;
29using HeuristicLab.Functions;
30using HeuristicLab.DataAnalysis;
31
32namespace HeuristicLab.StructureIdentification {
33  public class TheilInequalityCoefficientEvaluator : GPEvaluatorBase {
[479]34    private bool differential;
[369]35    public override string Description {
36      get {
37        return @"Evaluates 'FunctionTree' for all samples of 'Dataset' and calculates
38the 'Theil inequality coefficient (scale invariant)' of estimated values vs. real values of 'TargetVariable'.";
39      }
40    }
41
42    public TheilInequalityCoefficientEvaluator()
43      : base() {
[395]44      AddVariableInfo(new VariableInfo("Differential", "Wether to calculate the coefficient for the predicted change vs. original change or for the absolute prediction vs. original value", typeof(BoolData), VariableKind.In));
[369]45    }
46
[479]47    public override IOperation Apply(IScope scope) {
48      differential = GetVariableValue<BoolData>("Differential", scope, true).Data;
49      return base.Apply(scope);
50    }
51
52    public override double Evaluate(int start, int end) {
[369]53      double errorsSquaredSum = 0.0;
54      double estimatedSquaredSum = 0.0;
55      double originalSquaredSum = 0.0;
[479]56      for(int sample = start; sample < end; sample++) {
[395]57        double prevValue = 0.0;
[479]58        if(differential) prevValue = GetOriginalValue(sample - 1);
59        double estimatedChange = GetEstimatedValue(sample) - prevValue;
60        double originalChange = GetOriginalValue(sample) - prevValue;
[369]61        if(!double.IsNaN(originalChange) && !double.IsInfinity(originalChange)) {
62          double error = estimatedChange - originalChange;
63          errorsSquaredSum += error * error;
64          estimatedSquaredSum += estimatedChange * estimatedChange;
65          originalSquaredSum += originalChange * originalChange;
66        }
67      }
[479]68      int nSamples = end - start;
[400]69      double quality = Math.Sqrt(errorsSquaredSum / nSamples) / (Math.Sqrt(estimatedSquaredSum / nSamples) + Math.Sqrt(originalSquaredSum / nSamples));
[479]70      if(double.IsNaN(quality) || double.IsInfinity(quality))
[369]71        quality = double.MaxValue;
72      return quality;
73    }
74  }
75}
Note: See TracBrowser for help on using the repository browser.