[369] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Text;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Operators;
|
---|
| 29 | using HeuristicLab.Functions;
|
---|
| 30 | using HeuristicLab.DataAnalysis;
|
---|
| 31 |
|
---|
| 32 | namespace HeuristicLab.StructureIdentification {
|
---|
| 33 | public class TheilInequalityCoefficientEvaluator : GPEvaluatorBase {
|
---|
| 34 | public override string Description {
|
---|
| 35 | get {
|
---|
| 36 | return @"Evaluates 'FunctionTree' for all samples of 'Dataset' and calculates
|
---|
| 37 | the 'Theil inequality coefficient (scale invariant)' of estimated values vs. real values of 'TargetVariable'.";
|
---|
| 38 | }
|
---|
| 39 | }
|
---|
| 40 |
|
---|
| 41 | public TheilInequalityCoefficientEvaluator()
|
---|
| 42 | : base() {
|
---|
[395] | 43 | AddVariableInfo(new VariableInfo("Differential", "Wether to calculate the coefficient for the predicted change vs. original change or for the absolute prediction vs. original value", typeof(BoolData), VariableKind.In));
|
---|
[369] | 44 | }
|
---|
| 45 |
|
---|
| 46 | public override double Evaluate(IScope scope, IFunctionTree functionTree, int targetVariable, Dataset dataset) {
|
---|
| 47 | int trainingStart = GetVariableValue<IntData>("TrainingSamplesStart", scope, true).Data;
|
---|
| 48 | int trainingEnd = GetVariableValue<IntData>("TrainingSamplesEnd", scope, true).Data;
|
---|
[395] | 49 | bool difference = GetVariableValue<BoolData>("Differential", scope, true).Data;
|
---|
[369] | 50 | double errorsSquaredSum = 0.0;
|
---|
| 51 | double estimatedSquaredSum = 0.0;
|
---|
| 52 | double originalSquaredSum = 0.0;
|
---|
| 53 | functionTree.PrepareEvaluation(dataset);
|
---|
| 54 | for(int sample = trainingStart; sample < trainingEnd; sample++) {
|
---|
[395] | 55 | double prevValue = 0.0;
|
---|
| 56 | if(difference) prevValue = dataset.GetValue(sample - 1, targetVariable);
|
---|
[369] | 57 | double estimatedChange = functionTree.Evaluate(sample) - prevValue;
|
---|
| 58 | double originalChange = dataset.GetValue(sample, targetVariable) - prevValue;
|
---|
| 59 | if(!double.IsNaN(originalChange) && !double.IsInfinity(originalChange)) {
|
---|
| 60 | if(double.IsNaN(estimatedChange) || double.IsInfinity(estimatedChange))
|
---|
| 61 | estimatedChange = maximumPunishment;
|
---|
| 62 | else if(estimatedChange > maximumPunishment)
|
---|
| 63 | estimatedChange = maximumPunishment;
|
---|
| 64 | else if(estimatedChange < -maximumPunishment)
|
---|
| 65 | estimatedChange = - maximumPunishment;
|
---|
| 66 |
|
---|
| 67 | double error = estimatedChange - originalChange;
|
---|
| 68 | errorsSquaredSum += error * error;
|
---|
| 69 | estimatedSquaredSum += estimatedChange * estimatedChange;
|
---|
| 70 | originalSquaredSum += originalChange * originalChange;
|
---|
| 71 | }
|
---|
| 72 | }
|
---|
| 73 | int nSamples = trainingEnd - trainingStart;
|
---|
| 74 | double quality = Math.Sqrt(errorsSquaredSum / nSamples) / (Math.Sqrt(estimatedSquaredSum/nSamples) + Math.Sqrt(originalSquaredSum/nSamples));
|
---|
| 75 | if(double.IsNaN(quality) || double.IsInfinity(quality))
|
---|
| 76 | quality = double.MaxValue;
|
---|
| 77 | return quality;
|
---|
| 78 | }
|
---|
| 79 | }
|
---|
| 80 | }
|
---|