Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.StructureIdentification/Evaluation/MeanSquaredErrorEvaluator.cs @ 337

Last change on this file since 337 was 334, checked in by gkronber, 17 years ago

readded trainingsamplesstart and trainingsamplesend parameter for gp evaluation operators

File size: 4.2 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Operators;
29using HeuristicLab.Functions;
30using HeuristicLab.DataAnalysis;
31
32namespace HeuristicLab.StructureIdentification {
33  public class MeanSquaredErrorEvaluator : GPEvaluatorBase {
34    protected double[] backupValues;
35    public override string Description {
36      get {
37        return @"Evaluates 'FunctionTree' for all samples of 'DataSet' and calculates the mean-squared-error
38for the estimated values vs. the real values of 'TargetVariable'.";
39      }
40    }
41
42    public MeanSquaredErrorEvaluator()
43      : base() {
44      AddVariableInfo(new VariableInfo("UseEstimatedTargetValue", "Wether to use the original (measured) or the estimated (calculated) value for the targat variable when doing autoregressive modelling", typeof(BoolData), VariableKind.In));
45      GetVariableInfo("UseEstimatedTargetValue").Local = true;
46      AddVariable(new HeuristicLab.Core.Variable("UseEstimatedTargetValue", new BoolData(false)));
47    }
48
49    public override double Evaluate(IScope scope, IFunctionTree functionTree, int targetVariable, Dataset dataset) {
50      double errorsSquaredSum = 0;
51      double targetMean = dataset.GetMean(targetVariable);
52      bool useEstimatedValues = GetVariableValue<BoolData>("UseEstimatedTargetValue", scope, false).Data;
53      int trainingStart = GetVariableValue<IntData>("TrainingSamplesStart", scope, true).Data;
54      int trainingEnd = GetVariableValue<IntData>("TrainingSamplesEnd", scope, true).Data;
55      if(useEstimatedValues && backupValues == null) {
56        backupValues = new double[trainingEnd - trainingStart];
57        for(int i = trainingStart; i < trainingEnd; i++) {
58          backupValues[i-trainingStart] = dataset.GetValue(i, targetVariable);
59        }
60      }
61
62      for(int sample = trainingStart; sample < trainingEnd; sample++) {
63        double estimated = functionTree.Evaluate(dataset, sample);
64        double original = dataset.GetValue(sample, targetVariable);
65        if(double.IsNaN(estimated) || double.IsInfinity(estimated)) {
66          estimated = targetMean + maximumPunishment;
67        } else if(estimated > targetMean + maximumPunishment) {
68          estimated = targetMean + maximumPunishment;
69        } else if(estimated < targetMean - maximumPunishment) {
70          estimated = targetMean - maximumPunishment;
71        }
72        double error = estimated - original;
73        errorsSquaredSum += error * error;
74        if(useEstimatedValues) {
75          dataset.SetValue(sample, targetVariable, estimated);
76        }
77      }
78
79      if(useEstimatedValues) RestoreDataset(dataset, targetVariable, trainingStart, trainingEnd);
80      errorsSquaredSum /= (trainingEnd-trainingStart);
81      if(double.IsNaN(errorsSquaredSum) || double.IsInfinity(errorsSquaredSum)) {
82        errorsSquaredSum = double.MaxValue;
83      }
84      scope.GetVariableValue<DoubleData>("TotalEvaluatedNodes", true).Data = totalEvaluatedNodes + treeSize * (trainingEnd-trainingStart);
85      return errorsSquaredSum;
86    }
87
88    private void RestoreDataset(Dataset dataset, int targetVariable, int from, int to) {
89      for(int i = from; i < to; i++) {
90        dataset.SetValue(i, targetVariable, backupValues[i-from]);
91      }
92    }
93  }
94}
Note: See TracBrowser for help on using the repository browser.