1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Text;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Operators;
|
---|
29 | using HeuristicLab.Functions;
|
---|
30 | using HeuristicLab.DataAnalysis;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.StructureIdentification {
|
---|
33 | public class MCCEvaluator : GPEvaluatorBase {
|
---|
34 | public override string Description {
|
---|
35 | get {
|
---|
36 | return @"TASK";
|
---|
37 | }
|
---|
38 | }
|
---|
39 |
|
---|
40 | public MCCEvaluator()
|
---|
41 | : base() {
|
---|
42 | AddVariableInfo(new VariableInfo("ClassSeparation", "The value of separation between negative and positive target classification values (for instance 0.5 if negative=0 and positive=1).", typeof(DoubleData), VariableKind.In));
|
---|
43 | }
|
---|
44 |
|
---|
45 | private double[] original = new double[1];
|
---|
46 | private double[] estimated = new double[1];
|
---|
47 | public override double Evaluate(IScope scope, IFunctionTree functionTree, int targetVariable, Dataset dataset) {
|
---|
48 | int trainingStart = GetVariableValue<IntData>("TrainingSamplesStart", scope, true).Data;
|
---|
49 | int trainingEnd = GetVariableValue<IntData>("TrainingSamplesEnd", scope, true).Data;
|
---|
50 | int nSamples = trainingEnd-trainingStart;
|
---|
51 | double limit = GetVariableValue<DoubleData>("ClassSeparation", scope, true).Data;
|
---|
52 | if(estimated.Length != nSamples) {
|
---|
53 | estimated = new double[nSamples];
|
---|
54 | original = new double[nSamples];
|
---|
55 | }
|
---|
56 |
|
---|
57 | double positive = 0;
|
---|
58 | double negative = 0;
|
---|
59 | double targetMean = dataset.GetMean(targetVariable, trainingStart, trainingEnd);
|
---|
60 | for(int sample = trainingStart; sample < trainingEnd; sample++) {
|
---|
61 | double est = evaluator.Evaluate(sample);
|
---|
62 | double orig = dataset.GetValue(sample, targetVariable);
|
---|
63 | if(double.IsNaN(est) || double.IsInfinity(est)) {
|
---|
64 | est = targetMean + maximumPunishment;
|
---|
65 | } else if(est > targetMean + maximumPunishment) {
|
---|
66 | est = targetMean + maximumPunishment;
|
---|
67 | } else if(est < targetMean - maximumPunishment) {
|
---|
68 | est = targetMean - maximumPunishment;
|
---|
69 | }
|
---|
70 | estimated[sample-trainingStart] = est;
|
---|
71 | original[sample-trainingStart] = orig;
|
---|
72 | if(orig >= limit) positive++;
|
---|
73 | else negative++;
|
---|
74 | }
|
---|
75 | Array.Sort(estimated, original);
|
---|
76 | double best_mcc = -1.0;
|
---|
77 | double tp = 0;
|
---|
78 | double fn = positive;
|
---|
79 | double tn = negative;
|
---|
80 | double fp = 0;
|
---|
81 | for(int i = original.Length-1; i >= 0 ; i--) {
|
---|
82 | if(original[i] >= limit) {
|
---|
83 | tp++; fn--;
|
---|
84 | } else {
|
---|
85 | tn--; fp++;
|
---|
86 | }
|
---|
87 | double mcc = (tp * tn - fp * fn) / Math.Sqrt(positive * (tp + fn) * (tn + fp) * negative);
|
---|
88 | if(best_mcc < mcc) {
|
---|
89 | best_mcc = mcc;
|
---|
90 | }
|
---|
91 | }
|
---|
92 | scope.GetVariableValue<DoubleData>("TotalEvaluatedNodes", true).Data = totalEvaluatedNodes + treeSize * (trainingEnd - trainingStart);
|
---|
93 | return best_mcc;
|
---|
94 | }
|
---|
95 | }
|
---|
96 | }
|
---|