1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Text;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Operators;
|
---|
29 | using HeuristicLab.Functions;
|
---|
30 | using HeuristicLab.DataAnalysis;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.StructureIdentification {
|
---|
33 | public class EarlyStoppingMeanSquaredErrorEvaluator : MeanSquaredErrorEvaluator {
|
---|
34 | public override string Description {
|
---|
35 | get {
|
---|
36 | return @"Evaluates 'FunctionTree' for all samples of the dataset and calculates the mean-squared-error
|
---|
37 | for the estimated values vs. the real values of 'TargetVariable'.
|
---|
38 | This operator stops the computation as soon as an upper limit for the mean-squared-error is reached.";
|
---|
39 | }
|
---|
40 | }
|
---|
41 |
|
---|
42 | public EarlyStoppingMeanSquaredErrorEvaluator()
|
---|
43 | : base() {
|
---|
44 | AddVariableInfo(new VariableInfo("QualityLimit", "The upper limit of the MSE which is used as early stopping criterion.", typeof(DoubleData), VariableKind.In));
|
---|
45 | }
|
---|
46 |
|
---|
47 | // evaluates the function-tree for the given target-variable and the whole dataset and returns the MSE
|
---|
48 | public override double Evaluate(IScope scope, IFunctionTree functionTree, int targetVariable, Dataset dataset) {
|
---|
49 | double qualityLimit = GetVariableValue<DoubleData>("QualityLimit", scope, false).Data;
|
---|
50 | bool useEstimatedValues = GetVariableValue<BoolData>("UseEstimatedTargetValue", scope, false).Data;
|
---|
51 | int trainingStart = GetVariableValue<IntData>("TrainingSamplesStart", scope, true).Data;
|
---|
52 | int trainingEnd = GetVariableValue<IntData>("TrainingSamplesEnd", scope, true).Data;
|
---|
53 | int rows = trainingEnd-trainingStart;
|
---|
54 | if(useEstimatedValues && backupValues == null) {
|
---|
55 | backupValues = new double[rows];
|
---|
56 | for(int i = trainingStart; i < trainingEnd; i++) {
|
---|
57 | backupValues[i-trainingStart] = dataset.GetValue(i, targetVariable);
|
---|
58 | }
|
---|
59 | }
|
---|
60 | double errorsSquaredSum = 0;
|
---|
61 | double targetMean = dataset.GetMean(targetVariable);
|
---|
62 | for(int sample = trainingStart; sample < trainingEnd; sample++) {
|
---|
63 | double estimated = functionTree.Evaluate(dataset, sample);
|
---|
64 | double original = dataset.GetValue(sample, targetVariable);
|
---|
65 | if(double.IsNaN(estimated) || double.IsInfinity(estimated)) {
|
---|
66 | estimated = targetMean + maximumPunishment;
|
---|
67 | } else if(estimated > targetMean + maximumPunishment) {
|
---|
68 | estimated = targetMean + maximumPunishment;
|
---|
69 | } else if(estimated < targetMean - maximumPunishment) {
|
---|
70 | estimated = targetMean - maximumPunishment;
|
---|
71 | }
|
---|
72 |
|
---|
73 | double error = estimated - original;
|
---|
74 | errorsSquaredSum += error * error;
|
---|
75 |
|
---|
76 | // check the limit and stop as soon as we hit the limit
|
---|
77 | if(errorsSquaredSum / rows >= qualityLimit) {
|
---|
78 | scope.GetVariableValue<DoubleData>("TotalEvaluatedNodes", true).Data = totalEvaluatedNodes + treeSize * (sample-trainingStart + 1);
|
---|
79 | if(useEstimatedValues) RestoreDataset(dataset, targetVariable, trainingStart, sample);
|
---|
80 | return errorsSquaredSum / (sample-trainingStart + 1); // return estimated MSE (when the remaining errors are on average the same)
|
---|
81 | }
|
---|
82 | if(useEstimatedValues) {
|
---|
83 | dataset.SetValue(sample, targetVariable, estimated);
|
---|
84 | }
|
---|
85 | }
|
---|
86 | if(useEstimatedValues) RestoreDataset(dataset, targetVariable, trainingStart, trainingEnd);
|
---|
87 | errorsSquaredSum /= rows;
|
---|
88 | if(double.IsNaN(errorsSquaredSum) || double.IsInfinity(errorsSquaredSum)) {
|
---|
89 | errorsSquaredSum = double.MaxValue;
|
---|
90 | }
|
---|
91 | scope.GetVariableValue<DoubleData>("TotalEvaluatedNodes", true).Data = totalEvaluatedNodes + treeSize * rows;
|
---|
92 | return errorsSquaredSum;
|
---|
93 | }
|
---|
94 |
|
---|
95 | private void RestoreDataset(Dataset dataset, int targetVariable, int from, int to) {
|
---|
96 | for(int i = from; i < to; i++) {
|
---|
97 | dataset.SetValue(i, targetVariable, backupValues[i-from]);
|
---|
98 | }
|
---|
99 | }
|
---|
100 | }
|
---|
101 | }
|
---|