Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.StructureIdentification/Evaluation/EarlyStoppingMeanSquaredErrorEvaluator.cs @ 402

Last change on this file since 402 was 396, checked in by gkronber, 16 years ago

fixed ticket #205 by creating the function-specific evaluator in the evaluation operators.

File size: 4.7 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Operators;
29using HeuristicLab.Functions;
30using HeuristicLab.DataAnalysis;
31
32namespace HeuristicLab.StructureIdentification {
33  public class EarlyStoppingMeanSquaredErrorEvaluator : MeanSquaredErrorEvaluator {
34    public override string Description {
35      get {
36        return @"Evaluates 'FunctionTree' for all samples of the dataset and calculates the mean-squared-error
37for the estimated values vs. the real values of 'TargetVariable'.
38This operator stops the computation as soon as an upper limit for the mean-squared-error is reached.";
39      }
40    }
41
42    public EarlyStoppingMeanSquaredErrorEvaluator()
43      : base() {
44      AddVariableInfo(new VariableInfo("QualityLimit", "The upper limit of the MSE which is used as early stopping criterion.", typeof(DoubleData), VariableKind.In));
45    }
46
47    // evaluates the function-tree for the given target-variable and the whole dataset and returns the MSE
48    public override double Evaluate(IScope scope, IFunctionTree functionTree, int targetVariable, Dataset dataset) {
49      double qualityLimit = GetVariableValue<DoubleData>("QualityLimit", scope, false).Data;
50      bool useEstimatedValues = GetVariableValue<BoolData>("UseEstimatedTargetValue", scope, false).Data;
51      int trainingStart = GetVariableValue<IntData>("TrainingSamplesStart", scope, true).Data;
52      int trainingEnd = GetVariableValue<IntData>("TrainingSamplesEnd", scope, true).Data;
53      int rows = trainingEnd-trainingStart;
54      if(useEstimatedValues && backupValues == null) {
55        backupValues = new double[rows];
56        for(int i = trainingStart; i < trainingEnd; i++) {
57          backupValues[i-trainingStart] = dataset.GetValue(i, targetVariable);
58        }
59      }
60      double errorsSquaredSum = 0;
61      double targetMean = dataset.GetMean(targetVariable, trainingStart, trainingEnd);
62      for(int sample = trainingStart; sample < trainingEnd; sample++) {
63        double estimated = evaluator.Evaluate(sample);
64        double original = dataset.GetValue(sample, targetVariable);
65        if(double.IsNaN(estimated) || double.IsInfinity(estimated)) {
66          estimated = targetMean + maximumPunishment;
67        } else if(estimated > targetMean + maximumPunishment) {
68          estimated = targetMean + maximumPunishment;
69        } else if(estimated < targetMean - maximumPunishment) {
70          estimated = targetMean - maximumPunishment;
71        }
72
73        double error = estimated - original;
74        errorsSquaredSum += error * error;
75
76        // check the limit and stop as soon as we hit the limit
77        if(errorsSquaredSum / rows >= qualityLimit) {
78          scope.GetVariableValue<DoubleData>("TotalEvaluatedNodes", true).Data = totalEvaluatedNodes + treeSize * (sample-trainingStart + 1);
79          if(useEstimatedValues) RestoreDataset(dataset, targetVariable, trainingStart, sample);
80          return errorsSquaredSum / (sample-trainingStart + 1); // return estimated MSE (when the remaining errors are on average the same)
81        }
82        if(useEstimatedValues) {
83          dataset.SetValue(sample, targetVariable, estimated);
84        }
85      }
86      if(useEstimatedValues) RestoreDataset(dataset, targetVariable, trainingStart, trainingEnd);
87      errorsSquaredSum /= rows;
88      if(double.IsNaN(errorsSquaredSum) || double.IsInfinity(errorsSquaredSum)) {
89        errorsSquaredSum = double.MaxValue;
90      }
91      scope.GetVariableValue<DoubleData>("TotalEvaluatedNodes", true).Data = totalEvaluatedNodes + treeSize * rows;
92      return errorsSquaredSum;
93    }
94
95    private void RestoreDataset(Dataset dataset, int targetVariable, int from, int to) {
96      for(int i = from; i < to; i++) {
97        dataset.SetValue(i, targetVariable, backupValues[i-from]);
98      }
99    }
100  }
101}
Note: See TracBrowser for help on using the repository browser.