Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.StructureIdentification/Evaluation/EarlyStoppingMeanSquaredErrorEvaluator.cs @ 381

Last change on this file since 381 was 367, checked in by gkronber, 16 years ago

fixed small bugs in GP evaluators

File size: 4.8 KB
RevLine 
[128]1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Operators;
29using HeuristicLab.Functions;
30using HeuristicLab.DataAnalysis;
31
32namespace HeuristicLab.StructureIdentification {
33  public class EarlyStoppingMeanSquaredErrorEvaluator : MeanSquaredErrorEvaluator {
34    public override string Description {
35      get {
[155]36        return @"Evaluates 'FunctionTree' for all samples of the dataset and calculates the mean-squared-error
[128]37for the estimated values vs. the real values of 'TargetVariable'.
38This operator stops the computation as soon as an upper limit for the mean-squared-error is reached.";
39      }
40    }
41
42    public EarlyStoppingMeanSquaredErrorEvaluator()
43      : base() {
[129]44      AddVariableInfo(new VariableInfo("QualityLimit", "The upper limit of the MSE which is used as early stopping criterion.", typeof(DoubleData), VariableKind.In));
[128]45    }
46
[332]47    // evaluates the function-tree for the given target-variable and the whole dataset and returns the MSE
[155]48    public override double Evaluate(IScope scope, IFunctionTree functionTree, int targetVariable, Dataset dataset) {
[136]49      double qualityLimit = GetVariableValue<DoubleData>("QualityLimit", scope, false).Data;
[332]50      bool useEstimatedValues = GetVariableValue<BoolData>("UseEstimatedTargetValue", scope, false).Data;
[334]51      int trainingStart = GetVariableValue<IntData>("TrainingSamplesStart", scope, true).Data;
52      int trainingEnd = GetVariableValue<IntData>("TrainingSamplesEnd", scope, true).Data;
53      int rows = trainingEnd-trainingStart;
[332]54      if(useEstimatedValues && backupValues == null) {
[334]55        backupValues = new double[rows];
56        for(int i = trainingStart; i < trainingEnd; i++) {
57          backupValues[i-trainingStart] = dataset.GetValue(i, targetVariable);
[332]58        }
59      }
[128]60      double errorsSquaredSum = 0;
[367]61      double targetMean = dataset.GetMean(targetVariable, trainingStart, trainingEnd);
[363]62      functionTree.PrepareEvaluation(dataset);
[334]63      for(int sample = trainingStart; sample < trainingEnd; sample++) {
[363]64        double estimated = functionTree.Evaluate(sample);
[128]65        double original = dataset.GetValue(sample, targetVariable);
66        if(double.IsNaN(estimated) || double.IsInfinity(estimated)) {
67          estimated = targetMean + maximumPunishment;
68        } else if(estimated > targetMean + maximumPunishment) {
69          estimated = targetMean + maximumPunishment;
70        } else if(estimated < targetMean - maximumPunishment) {
71          estimated = targetMean - maximumPunishment;
72        }
[332]73
[128]74        double error = estimated - original;
75        errorsSquaredSum += error * error;
76
[136]77        // check the limit and stop as soon as we hit the limit
[334]78        if(errorsSquaredSum / rows >= qualityLimit) {
79          scope.GetVariableValue<DoubleData>("TotalEvaluatedNodes", true).Data = totalEvaluatedNodes + treeSize * (sample-trainingStart + 1);
80          if(useEstimatedValues) RestoreDataset(dataset, targetVariable, trainingStart, sample);
81          return errorsSquaredSum / (sample-trainingStart + 1); // return estimated MSE (when the remaining errors are on average the same)
[200]82        }
[332]83        if(useEstimatedValues) {
84          dataset.SetValue(sample, targetVariable, estimated);
85        }
[128]86      }
[334]87      if(useEstimatedValues) RestoreDataset(dataset, targetVariable, trainingStart, trainingEnd);
88      errorsSquaredSum /= rows;
[128]89      if(double.IsNaN(errorsSquaredSum) || double.IsInfinity(errorsSquaredSum)) {
90        errorsSquaredSum = double.MaxValue;
91      }
[334]92      scope.GetVariableValue<DoubleData>("TotalEvaluatedNodes", true).Data = totalEvaluatedNodes + treeSize * rows;
[128]93      return errorsSquaredSum;
94    }
[332]95
96    private void RestoreDataset(Dataset dataset, int targetVariable, int from, int to) {
97      for(int i = from; i < to; i++) {
[334]98        dataset.SetValue(i, targetVariable, backupValues[i-from]);
[332]99      }
100    }
[128]101  }
102}
Note: See TracBrowser for help on using the repository browser.