[128] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Text;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Operators;
|
---|
| 29 | using HeuristicLab.Functions;
|
---|
| 30 | using HeuristicLab.DataAnalysis;
|
---|
| 31 |
|
---|
| 32 | namespace HeuristicLab.StructureIdentification {
|
---|
| 33 | public class EarlyStoppingMeanSquaredErrorEvaluator : MeanSquaredErrorEvaluator {
|
---|
| 34 | public override string Description {
|
---|
| 35 | get {
|
---|
[155] | 36 | return @"Evaluates 'FunctionTree' for all samples of the dataset and calculates the mean-squared-error
|
---|
[128] | 37 | for the estimated values vs. the real values of 'TargetVariable'.
|
---|
| 38 | This operator stops the computation as soon as an upper limit for the mean-squared-error is reached.";
|
---|
| 39 | }
|
---|
| 40 | }
|
---|
| 41 |
|
---|
| 42 | public EarlyStoppingMeanSquaredErrorEvaluator()
|
---|
| 43 | : base() {
|
---|
[129] | 44 | AddVariableInfo(new VariableInfo("QualityLimit", "The upper limit of the MSE which is used as early stopping criterion.", typeof(DoubleData), VariableKind.In));
|
---|
[128] | 45 | }
|
---|
| 46 |
|
---|
[332] | 47 | // evaluates the function-tree for the given target-variable and the whole dataset and returns the MSE
|
---|
[155] | 48 | public override double Evaluate(IScope scope, IFunctionTree functionTree, int targetVariable, Dataset dataset) {
|
---|
[136] | 49 | double qualityLimit = GetVariableValue<DoubleData>("QualityLimit", scope, false).Data;
|
---|
[332] | 50 | bool useEstimatedValues = GetVariableValue<BoolData>("UseEstimatedTargetValue", scope, false).Data;
|
---|
[334] | 51 | int trainingStart = GetVariableValue<IntData>("TrainingSamplesStart", scope, true).Data;
|
---|
| 52 | int trainingEnd = GetVariableValue<IntData>("TrainingSamplesEnd", scope, true).Data;
|
---|
| 53 | int rows = trainingEnd-trainingStart;
|
---|
[332] | 54 | if(useEstimatedValues && backupValues == null) {
|
---|
[334] | 55 | backupValues = new double[rows];
|
---|
| 56 | for(int i = trainingStart; i < trainingEnd; i++) {
|
---|
| 57 | backupValues[i-trainingStart] = dataset.GetValue(i, targetVariable);
|
---|
[332] | 58 | }
|
---|
| 59 | }
|
---|
[128] | 60 | double errorsSquaredSum = 0;
|
---|
[367] | 61 | double targetMean = dataset.GetMean(targetVariable, trainingStart, trainingEnd);
|
---|
[363] | 62 | functionTree.PrepareEvaluation(dataset);
|
---|
[334] | 63 | for(int sample = trainingStart; sample < trainingEnd; sample++) {
|
---|
[363] | 64 | double estimated = functionTree.Evaluate(sample);
|
---|
[128] | 65 | double original = dataset.GetValue(sample, targetVariable);
|
---|
| 66 | if(double.IsNaN(estimated) || double.IsInfinity(estimated)) {
|
---|
| 67 | estimated = targetMean + maximumPunishment;
|
---|
| 68 | } else if(estimated > targetMean + maximumPunishment) {
|
---|
| 69 | estimated = targetMean + maximumPunishment;
|
---|
| 70 | } else if(estimated < targetMean - maximumPunishment) {
|
---|
| 71 | estimated = targetMean - maximumPunishment;
|
---|
| 72 | }
|
---|
[332] | 73 |
|
---|
[128] | 74 | double error = estimated - original;
|
---|
| 75 | errorsSquaredSum += error * error;
|
---|
| 76 |
|
---|
[136] | 77 | // check the limit and stop as soon as we hit the limit
|
---|
[334] | 78 | if(errorsSquaredSum / rows >= qualityLimit) {
|
---|
| 79 | scope.GetVariableValue<DoubleData>("TotalEvaluatedNodes", true).Data = totalEvaluatedNodes + treeSize * (sample-trainingStart + 1);
|
---|
| 80 | if(useEstimatedValues) RestoreDataset(dataset, targetVariable, trainingStart, sample);
|
---|
| 81 | return errorsSquaredSum / (sample-trainingStart + 1); // return estimated MSE (when the remaining errors are on average the same)
|
---|
[200] | 82 | }
|
---|
[332] | 83 | if(useEstimatedValues) {
|
---|
| 84 | dataset.SetValue(sample, targetVariable, estimated);
|
---|
| 85 | }
|
---|
[128] | 86 | }
|
---|
[334] | 87 | if(useEstimatedValues) RestoreDataset(dataset, targetVariable, trainingStart, trainingEnd);
|
---|
| 88 | errorsSquaredSum /= rows;
|
---|
[128] | 89 | if(double.IsNaN(errorsSquaredSum) || double.IsInfinity(errorsSquaredSum)) {
|
---|
| 90 | errorsSquaredSum = double.MaxValue;
|
---|
| 91 | }
|
---|
[334] | 92 | scope.GetVariableValue<DoubleData>("TotalEvaluatedNodes", true).Data = totalEvaluatedNodes + treeSize * rows;
|
---|
[128] | 93 | return errorsSquaredSum;
|
---|
| 94 | }
|
---|
[332] | 95 |
|
---|
| 96 | private void RestoreDataset(Dataset dataset, int targetVariable, int from, int to) {
|
---|
| 97 | for(int i = from; i < to; i++) {
|
---|
[334] | 98 | dataset.SetValue(i, targetVariable, backupValues[i-from]);
|
---|
[332] | 99 | }
|
---|
| 100 | }
|
---|
[128] | 101 | }
|
---|
| 102 | }
|
---|