Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.StructureIdentification/Evaluation/CoefficientOfDeterminationEvaluator.cs @ 419

Last change on this file since 419 was 400, checked in by gkronber, 16 years ago

fixed #156 (All GP-evaluators should update the number of total evaluated nodes)

File size: 3.3 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Operators;
29using HeuristicLab.Functions;
30using HeuristicLab.DataAnalysis;
31
32namespace HeuristicLab.StructureIdentification {
33  public class CoefficientOfDeterminationEvaluator : GPEvaluatorBase {
34    public override string Description {
35      get {
36        return @"Evaluates 'FunctionTree' for all samples of 'Dataset' and calculates
37the 'coefficient of determination' of estimated values vs. real values of 'TargetVariable'.";
38      }
39    }
40
41    public CoefficientOfDeterminationEvaluator()
42      : base() {
43    }
44
45    public override double Evaluate(IScope scope, IFunctionTree functionTree, int targetVariable, Dataset dataset) {
46      int trainingStart = GetVariableValue<IntData>("TrainingSamplesStart", scope, true).Data;
47      int trainingEnd = GetVariableValue<IntData>("TrainingSamplesEnd", scope, true).Data;
48      double errorsSquaredSum = 0.0;
49      double originalDeviationTotalSumOfSquares = 0.0;
50      double targetMean = dataset.GetMean(targetVariable, trainingStart, trainingEnd);
51      for(int sample = trainingStart; sample < trainingEnd; sample++) {
52        double estimated = evaluator.Evaluate(sample);
53        double original = dataset.GetValue(sample, targetVariable);
54        if(!double.IsNaN(original) && !double.IsInfinity(original)) {
55          if(double.IsNaN(estimated) || double.IsInfinity(estimated))
56            estimated = targetMean + maximumPunishment;
57          else if(estimated > (targetMean + maximumPunishment))
58            estimated = targetMean + maximumPunishment;
59          else if(estimated < (targetMean - maximumPunishment))
60            estimated = targetMean - maximumPunishment;
61
62          double error = estimated - original;
63          errorsSquaredSum += error * error;
64
65          double origDeviation = original - targetMean;
66          originalDeviationTotalSumOfSquares += origDeviation * origDeviation;
67        }
68      }
69
70      scope.GetVariableValue<DoubleData>("TotalEvaluatedNodes", true).Data = totalEvaluatedNodes + treeSize * (trainingEnd - trainingStart);
71
72      double quality = 1 - errorsSquaredSum / originalDeviationTotalSumOfSquares;
73      if(quality > 1)
74        throw new InvalidProgramException();
75      if(double.IsNaN(quality) || double.IsInfinity(quality))
76        quality = double.MaxValue;
77      return quality;
78    }
79  }
80}
Note: See TracBrowser for help on using the repository browser.