1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Linq;
|
---|
25 | using System.Text;
|
---|
26 | using HeuristicLab.Core;
|
---|
27 | using HeuristicLab.Data;
|
---|
28 | using HeuristicLab.Operators;
|
---|
29 | using HeuristicLab.Functions;
|
---|
30 | using HeuristicLab.DataAnalysis;
|
---|
31 |
|
---|
32 | namespace HeuristicLab.StructureIdentification {
|
---|
33 | public class CoefficientOfDeterminationEvaluator : OperatorBase {
|
---|
34 | public override string Description {
|
---|
35 | get { return @"Applies 'OperatorTree' to samples 'FirstSampleIndex' - 'LastSampleIndex' (inclusive) of 'Dataset' and calculates
|
---|
36 | the 'coefficient of determination' of estimated values vs. real values of 'TargetVariable'."; }
|
---|
37 | }
|
---|
38 |
|
---|
39 | public CoefficientOfDeterminationEvaluator()
|
---|
40 | : base() {
|
---|
41 | AddVariableInfo(new VariableInfo("OperatorTree", "The function tree that should be evaluated", typeof(IFunction), VariableKind.In));
|
---|
42 | AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In));
|
---|
43 | AddVariableInfo(new VariableInfo("TargetVariable", "Index of the target variable in the dataset", typeof(IntData), VariableKind.In));
|
---|
44 | AddVariableInfo(new VariableInfo("FirstSampleIndex", "Index of the first row of the dataset on which the function should be evaluated", typeof(IntData), VariableKind.In));
|
---|
45 | AddVariableInfo(new VariableInfo("LastSampleIndex", "Index of the last row of the dataset on which the function should be evaluated (inclusive)", typeof(IntData), VariableKind.In));
|
---|
46 | AddVariableInfo(new VariableInfo("PunishmentFactor", "Punishment factor for invalid estimations", typeof(DoubleData), VariableKind.In));
|
---|
47 | AddVariableInfo(new VariableInfo("UseEstimatedTargetValues", "When the function tree contains the target variable this variable determines " +
|
---|
48 | "if we should use the estimated or the original values of the target variable in the evaluation", typeof(BoolData), VariableKind.In));
|
---|
49 | AddVariableInfo(new VariableInfo("Quality", "The coefficient of determination of the model", typeof(DoubleData), VariableKind.New));
|
---|
50 |
|
---|
51 | }
|
---|
52 |
|
---|
53 |
|
---|
54 | private double[] savedTargetVariable = new double[1];
|
---|
55 | public override IOperation Apply(IScope scope) {
|
---|
56 | int firstSampleIndex = GetVariableValue<IntData>("FirstSampleIndex", scope, true).Data;
|
---|
57 | int lastSampleIndex = GetVariableValue<IntData>("LastSampleIndex", scope, true).Data;
|
---|
58 |
|
---|
59 | if(lastSampleIndex < firstSampleIndex) {
|
---|
60 | throw new InvalidProgramException();
|
---|
61 | }
|
---|
62 |
|
---|
63 | IFunction function = GetVariableValue<IFunction>("OperatorTree", scope, true);
|
---|
64 |
|
---|
65 | Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
|
---|
66 |
|
---|
67 | int targetVariable = GetVariableValue<IntData>("TargetVariable", scope, true).Data;
|
---|
68 | bool useEstimatedTargetValues = GetVariableValue<BoolData>("UseEstimatedTargetValues", scope, true).Data;
|
---|
69 | double punishmentFactor = GetVariableValue<DoubleData>("PunishmentFactor", scope, true).Data;
|
---|
70 |
|
---|
71 | if(useEstimatedTargetValues && savedTargetVariable.Length != lastSampleIndex - firstSampleIndex + 1) {
|
---|
72 | savedTargetVariable = new double[lastSampleIndex - firstSampleIndex + 1];
|
---|
73 | }
|
---|
74 |
|
---|
75 | double maximumPunishment = punishmentFactor * dataset.GetRange(targetVariable, firstSampleIndex, lastSampleIndex);
|
---|
76 |
|
---|
77 | double errorsSquaredSum = 0.0;
|
---|
78 | double originalsSum = 0.0;
|
---|
79 | double targetMean = dataset.GetMean(targetVariable, firstSampleIndex, lastSampleIndex);
|
---|
80 |
|
---|
81 | for(int sample = firstSampleIndex; sample <= lastSampleIndex; sample++) {
|
---|
82 | double estimated = function.Evaluate(dataset, sample);
|
---|
83 | double original = dataset.GetValue(sample, targetVariable);
|
---|
84 |
|
---|
85 | if(useEstimatedTargetValues) {
|
---|
86 | savedTargetVariable[sample - firstSampleIndex] = original;
|
---|
87 | dataset.SetValue(sample, targetVariable, estimated);
|
---|
88 | }
|
---|
89 |
|
---|
90 | if(!double.IsNaN(original) && !double.IsInfinity(original)) {
|
---|
91 | if(double.IsNaN(estimated) || double.IsInfinity(estimated))
|
---|
92 | estimated = targetMean + maximumPunishment;
|
---|
93 | else if(estimated > (targetMean + maximumPunishment))
|
---|
94 | estimated = targetMean + maximumPunishment;
|
---|
95 | else if(estimated < (targetMean - maximumPunishment))
|
---|
96 | estimated = targetMean - maximumPunishment;
|
---|
97 |
|
---|
98 | double error = estimated - original;
|
---|
99 | errorsSquaredSum += error * error;
|
---|
100 | originalsSum += original;
|
---|
101 | }
|
---|
102 | }
|
---|
103 |
|
---|
104 | double originalsMean = originalsSum / (lastSampleIndex - firstSampleIndex +1);
|
---|
105 |
|
---|
106 | double originalTotalSumOfSquares = 0.0;
|
---|
107 |
|
---|
108 | for(int sample=0; sample <savedTargetVariable.Length; sample++) {
|
---|
109 | double original = savedTargetVariable[sample];
|
---|
110 |
|
---|
111 | if(!double.IsInfinity(original) && !double.IsNaN(original)) {
|
---|
112 | original = original - originalsMean;
|
---|
113 | originalTotalSumOfSquares += original * original;
|
---|
114 | }
|
---|
115 | }
|
---|
116 |
|
---|
117 | double quality = 1 - errorsSquaredSum / originalTotalSumOfSquares;
|
---|
118 |
|
---|
119 | if(quality > 1) {
|
---|
120 | throw new InvalidProgramException();
|
---|
121 | }
|
---|
122 |
|
---|
123 | if(double.IsNaN(quality) || double.IsInfinity(quality)) {
|
---|
124 | quality = double.MaxValue;
|
---|
125 | }
|
---|
126 |
|
---|
127 | if(useEstimatedTargetValues) {
|
---|
128 | // restore original values of the target variable
|
---|
129 | for(int sample = firstSampleIndex; sample <= lastSampleIndex; sample++) {
|
---|
130 | dataset.SetValue(sample, targetVariable, savedTargetVariable[sample - firstSampleIndex]);
|
---|
131 | }
|
---|
132 | }
|
---|
133 |
|
---|
134 | scope.AddVariable(new HeuristicLab.Core.Variable("Quality", new DoubleData(quality)));
|
---|
135 | return null;
|
---|
136 | }
|
---|
137 | }
|
---|
138 | }
|
---|