Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.StructureIdentification/Evaluation/CoefficientOfDeterminationEvaluator.cs @ 105

Last change on this file since 105 was 2, checked in by swagner, 17 years ago

Added HeuristicLab 3.0 sources from former SVN repository at revision 52

File size: 6.4 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using System.Collections.Generic;
24using System.Linq;
25using System.Text;
26using HeuristicLab.Core;
27using HeuristicLab.Data;
28using HeuristicLab.Operators;
29using HeuristicLab.Functions;
30using HeuristicLab.DataAnalysis;
31
32namespace HeuristicLab.StructureIdentification {
33  public class CoefficientOfDeterminationEvaluator : OperatorBase {
34    public override string Description {
35      get { return @"Applies 'OperatorTree' to samples 'FirstSampleIndex' - 'LastSampleIndex' (inclusive) of 'Dataset' and calculates
36the 'coefficient of determination' of estimated values vs. real values of 'TargetVariable'."; }
37    }
38
39    public CoefficientOfDeterminationEvaluator()
40      : base() {
41      AddVariableInfo(new VariableInfo("OperatorTree", "The function tree that should be evaluated", typeof(IFunction), VariableKind.In));
42      AddVariableInfo(new VariableInfo("Dataset", "Dataset with all samples on which to apply the function", typeof(Dataset), VariableKind.In));
43      AddVariableInfo(new VariableInfo("TargetVariable", "Index of the target variable in the dataset", typeof(IntData), VariableKind.In));
44      AddVariableInfo(new VariableInfo("FirstSampleIndex", "Index of the first row of the dataset on which the function should be evaluated", typeof(IntData), VariableKind.In));
45      AddVariableInfo(new VariableInfo("LastSampleIndex", "Index of the last row of the dataset on which the function should be evaluated (inclusive)", typeof(IntData), VariableKind.In));
46      AddVariableInfo(new VariableInfo("PunishmentFactor", "Punishment factor for invalid estimations", typeof(DoubleData), VariableKind.In));
47      AddVariableInfo(new VariableInfo("UseEstimatedTargetValues", "When the function tree contains the target variable this variable determines " +
48      "if we should use the estimated or the original values of the target variable in the evaluation", typeof(BoolData), VariableKind.In));
49      AddVariableInfo(new VariableInfo("Quality", "The coefficient of determination of the model", typeof(DoubleData), VariableKind.New));
50
51    }
52
53
54    private double[] savedTargetVariable = new double[1];
55    public override IOperation Apply(IScope scope) {
56      int firstSampleIndex = GetVariableValue<IntData>("FirstSampleIndex", scope, true).Data;
57      int lastSampleIndex = GetVariableValue<IntData>("LastSampleIndex", scope, true).Data;
58
59      if(lastSampleIndex < firstSampleIndex) {
60        throw new InvalidProgramException();
61      }
62
63      IFunction function = GetVariableValue<IFunction>("OperatorTree", scope, true);
64
65      Dataset dataset = GetVariableValue<Dataset>("Dataset", scope, true);
66
67      int targetVariable = GetVariableValue<IntData>("TargetVariable", scope, true).Data;
68      bool useEstimatedTargetValues = GetVariableValue<BoolData>("UseEstimatedTargetValues", scope, true).Data;
69      double punishmentFactor = GetVariableValue<DoubleData>("PunishmentFactor", scope, true).Data;
70
71      if(useEstimatedTargetValues && savedTargetVariable.Length != lastSampleIndex - firstSampleIndex + 1) {
72        savedTargetVariable = new double[lastSampleIndex - firstSampleIndex + 1];
73      }
74
75      double maximumPunishment = punishmentFactor * dataset.GetRange(targetVariable, firstSampleIndex, lastSampleIndex);
76
77      double errorsSquaredSum = 0.0;
78      double originalsSum = 0.0;
79      double targetMean = dataset.GetMean(targetVariable, firstSampleIndex, lastSampleIndex);
80
81      for(int sample = firstSampleIndex; sample <= lastSampleIndex; sample++) {
82        double estimated = function.Evaluate(dataset, sample);
83        double original = dataset.GetValue(sample, targetVariable);
84
85        if(useEstimatedTargetValues) {
86          savedTargetVariable[sample - firstSampleIndex] = original;
87          dataset.SetValue(sample, targetVariable, estimated);
88        }
89
90        if(!double.IsNaN(original) && !double.IsInfinity(original)) {
91          if(double.IsNaN(estimated) || double.IsInfinity(estimated))
92            estimated = targetMean + maximumPunishment;
93          else if(estimated > (targetMean + maximumPunishment))
94            estimated = targetMean + maximumPunishment;
95          else if(estimated < (targetMean - maximumPunishment))
96            estimated = targetMean - maximumPunishment;
97
98          double error = estimated - original;
99          errorsSquaredSum += error * error;
100          originalsSum += original;
101        }
102      }
103
104      double originalsMean = originalsSum / (lastSampleIndex - firstSampleIndex +1);
105     
106      double originalTotalSumOfSquares = 0.0;
107
108      for(int sample=0; sample <savedTargetVariable.Length; sample++) {
109        double original = savedTargetVariable[sample];
110
111        if(!double.IsInfinity(original) && !double.IsNaN(original)) {
112          original = original - originalsMean;
113          originalTotalSumOfSquares += original * original;
114        }
115      }
116
117      double quality = 1 - errorsSquaredSum / originalTotalSumOfSquares;
118
119      if(quality > 1) {
120        throw new InvalidProgramException();
121      }
122
123      if(double.IsNaN(quality) || double.IsInfinity(quality)) {
124        quality = double.MaxValue;
125      }
126
127      if(useEstimatedTargetValues) {
128        // restore original values of the target variable
129        for(int sample = firstSampleIndex; sample <= lastSampleIndex; sample++) {
130          dataset.SetValue(sample, targetVariable, savedTargetVariable[sample - firstSampleIndex]);
131        }
132      }
133
134      scope.AddVariable(new HeuristicLab.Core.Variable("Quality", new DoubleData(quality)));
135      return null;
136    }
137  }
138}
Note: See TracBrowser for help on using the repository browser.