[485] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Text;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
| 28 | using HeuristicLab.Operators;
|
---|
| 29 | using HeuristicLab.Functions;
|
---|
| 30 | using HeuristicLab.DataAnalysis;
|
---|
| 31 |
|
---|
| 32 | namespace HeuristicLab.StructureIdentification {
|
---|
| 33 | public class ClassificationMatrixEvaluator : GPEvaluatorBase {
|
---|
| 34 | private const double EPSILON = 1.0E-6;
|
---|
| 35 | private double[] classesArr;
|
---|
| 36 | private double[] thresholds;
|
---|
| 37 | private IntMatrixData matrix;
|
---|
| 38 | public override string Description {
|
---|
| 39 | get {
|
---|
| 40 | return @"Calculates the classifcation matrix of the model.";
|
---|
| 41 | }
|
---|
| 42 | }
|
---|
| 43 |
|
---|
| 44 | public ClassificationMatrixEvaluator()
|
---|
| 45 | : base() {
|
---|
| 46 | AddVariableInfo(new VariableInfo("ClassificationMatrix", "The resulting classification matrix of the model", typeof(IntMatrixData), VariableKind.New));
|
---|
| 47 | AddVariableInfo(new VariableInfo("TargetClassValues", "The original class values of target variable (for instance negative=0 and positive=1).", typeof(ItemList<DoubleData>), VariableKind.In));
|
---|
| 48 | }
|
---|
| 49 |
|
---|
| 50 | public override IOperation Apply(IScope scope) {
|
---|
| 51 | ItemList<DoubleData> classes = GetVariableValue<ItemList<DoubleData>>("TargetClassValues", scope, true);
|
---|
| 52 | classesArr = new double[classes.Count];
|
---|
| 53 | for(int i = 0; i < classesArr.Length; i++) classesArr[i] = classes[i].Data;
|
---|
| 54 | Array.Sort(classesArr);
|
---|
| 55 | thresholds = new double[classes.Count - 1];
|
---|
| 56 | for(int i = 0; i < classesArr.Length - 1; i++) {
|
---|
| 57 | thresholds[i] = (classesArr[i] + classesArr[i + 1]) / 2.0;
|
---|
| 58 | }
|
---|
| 59 |
|
---|
| 60 | matrix = GetVariableValue<IntMatrixData>("ClassificationMatrix", scope, false, false);
|
---|
| 61 | if(matrix == null) {
|
---|
| 62 | matrix = new IntMatrixData(new int[classesArr.Length, classesArr.Length]);
|
---|
| 63 | scope.AddVariable(new HeuristicLab.Core.Variable(scope.TranslateName("ClassificationMatrix"), matrix));
|
---|
| 64 | }
|
---|
| 65 | return base.Apply(scope);
|
---|
| 66 | }
|
---|
| 67 |
|
---|
| 68 | public override void Evaluate(int start, int end) {
|
---|
| 69 | int nSamples = end - start;
|
---|
| 70 | for(int sample = start; sample < end; sample++) {
|
---|
| 71 | double est = GetEstimatedValue(sample);
|
---|
| 72 | double origClass = GetOriginalValue(sample);
|
---|
| 73 | int estClassIndex = -1;
|
---|
| 74 | // if estimation is lower than the smallest threshold value -> estimated class is the lower class
|
---|
| 75 | if(est < thresholds[0]) estClassIndex = 0;
|
---|
| 76 | // if estimation is larger (or equal) than the largest threshold value -> estimated class is the upper class
|
---|
| 77 | else if(est >= thresholds[thresholds.Length - 1]) estClassIndex = classesArr.Length - 1;
|
---|
| 78 | else {
|
---|
| 79 | // otherwise the estimated class is the class which upper threshold is larger than the estimated value
|
---|
| 80 | for(int k = 0; k < thresholds.Length; k++) {
|
---|
| 81 | if(thresholds[k] > est) {
|
---|
| 82 | estClassIndex = k;
|
---|
| 83 | break;
|
---|
| 84 | }
|
---|
| 85 | }
|
---|
| 86 | }
|
---|
| 87 | SetOriginalValue(sample, classesArr[estClassIndex]);
|
---|
| 88 |
|
---|
| 89 | int origClassIndex = -1;
|
---|
| 90 | for(int i = 0; i < classesArr.Length; i++) {
|
---|
| 91 | if(IsEqual(origClass, classesArr[i])) origClassIndex = i;
|
---|
| 92 | }
|
---|
| 93 | matrix.Data[origClassIndex, estClassIndex]++;
|
---|
| 94 | }
|
---|
| 95 | }
|
---|
| 96 |
|
---|
| 97 | private bool IsEqual(double x, double y) {
|
---|
| 98 | return Math.Abs(x - y) < EPSILON;
|
---|
| 99 | }
|
---|
| 100 | }
|
---|
| 101 | }
|
---|