[1517] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2009 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using System.Text;
|
---|
| 26 | using HeuristicLab.Random;
|
---|
| 27 | using HeuristicLab.Core;
|
---|
| 28 |
|
---|
| 29 | namespace HeuristicLab.StatisticalAnalysis {
|
---|
| 30 | public class MannWhitneyWilcoxonTest : IEditable {
|
---|
| 31 |
|
---|
| 32 | public IView CreateView() {
|
---|
| 33 | return CreateEditor();
|
---|
| 34 | }
|
---|
| 35 |
|
---|
| 36 | public IEditor CreateEditor() {
|
---|
| 37 | return new MannWhitneyWilcoxonTestControl();
|
---|
| 38 | }
|
---|
| 39 |
|
---|
| 40 | /// <summary>
|
---|
| 41 | /// Calculates the p-value of a 2-tailed Mann Whitney Wilcoxon U-test (also known as Mann Whitney rank sum test).
|
---|
| 42 | /// The test performs a ranking of the data and returns the p-value indicating the level of significance
|
---|
| 43 | /// at which the hypothesis H0 can be rejected.
|
---|
| 44 | /// Caution: This method approximates the ranks in p1 and p2 with a normal distribution and should only be called
|
---|
| 45 | /// when the sample size is at least 10 in both samples.
|
---|
| 46 | ///
|
---|
| 47 | /// </summary>
|
---|
| 48 | /// <param name="p1">Array with samples from population 1</param>
|
---|
| 49 | /// <param name="p2">Array with samples from population 2</param>
|
---|
| 50 | /// <returns>The p-value of the test</returns>
|
---|
| 51 | public static double TwoTailedTest(double[] p1, double[] p2) {
|
---|
[1548] | 52 | Array.Sort<double>(p1);
|
---|
| 53 | Array.Sort<double>(p2);
|
---|
[1517] | 54 | double rank = MannWhitneyWilcoxonTest.CalculateRankSumForP1(p1, p2);
|
---|
| 55 | return MannWhitneyWilcoxonTest.ApproximatePValue(rank, p1.Length, p2.Length, true);
|
---|
| 56 | }
|
---|
| 57 |
|
---|
| 58 | /// <summary>
|
---|
| 59 | /// Calculates whether a 2-tailed Mann Whitney Wilcoxon U-test (also known as Mann Whitney rank sum test)
|
---|
| 60 | /// would reject the hypothesis H0 that the given two populations stem from the same distribution.
|
---|
| 61 | /// The alternative hypothesis would be that they come from different distributions.
|
---|
| 62 | /// The test performs a ranking of the data and decides based on the ranking whehter to reject the
|
---|
| 63 | /// hypothesis or not.
|
---|
| 64 | ///
|
---|
| 65 | /// If there are less than 20 samples in each population this decision is based on a table lookup.
|
---|
| 66 | /// If one array consists of more than 20 samples, it will approximate the distribution by a normal
|
---|
| 67 | /// distribution. In the case of the table lookup, alpha is restricted to 0.01, 0.05, and 0.1.
|
---|
| 68 | /// </summary>
|
---|
| 69 | /// <param name="p1">Array with samples from population 1</param>
|
---|
| 70 | /// <param name="p2">Array with samples from population 2</param>
|
---|
| 71 | /// <param name="alpha">The significance level. If p1 and p2 are both smaller or equal than 20, the decision is based on three tables that represent significance at 0.01, 0.05, and 0.1.</param>
|
---|
| 72 | /// <returns>True if H0 (p1 equals p2) can be rejected, False otherwise</returns>
|
---|
| 73 | public static bool TwoTailedTest(double[] p1, double[] p2, double alpha) {
|
---|
[1548] | 74 | Array.Sort<double>(p1);
|
---|
| 75 | Array.Sort<double>(p2);
|
---|
[1517] | 76 | return MannWhitneyWilcoxonTest.TwoTailedTest(p1, p2, alpha, 20);
|
---|
| 77 | }
|
---|
| 78 |
|
---|
| 79 | /// <summary>
|
---|
| 80 | /// Calculates whether a 2-tailed Mann Whitney Wilcoxon U-test (also known as Mann Whitney rank sum test)
|
---|
| 81 | /// would reject the hypothesis H0 that the given two populations stem from the same distribution.
|
---|
| 82 | /// The alternative hypothesis would be that they come from different distributions.
|
---|
| 83 | /// The test performs a ranking of the data and decides based on the ranking whehter to reject the
|
---|
| 84 | /// hypothesis or not.
|
---|
| 85 | ///
|
---|
| 86 | /// If there are less than <paramref name="approximationLevel"/> samples in each population this
|
---|
| 87 | /// decision is based on a table lookup.
|
---|
| 88 | /// If one array consists of more than <paramref name="approximationLevel"/> samples, it will
|
---|
| 89 | /// approximate the distribution by a normal distribution. In the case of the table lookup,
|
---|
| 90 | /// alpha is restricted to 0.01, 0.05, and 0.1.
|
---|
| 91 | /// </summary>
|
---|
| 92 | /// <param name="p1">Array with samples from population 1</param>
|
---|
| 93 | /// <param name="p2">Array with samples from population 2</param>
|
---|
| 94 | /// <param name="alpha">The significance level. If p1 and p2 are both smaller or equal than 20,
|
---|
| 95 | /// the decision is based on three tables that represent significance at 0.01, 0.05, and 0.1.</param>
|
---|
| 96 | /// <param name="approximationLevel">Defines at which sample size to use normal approximation,
|
---|
| 97 | /// instead of the table lookup. If a higher value than 20 is specified, the value 20 will be
|
---|
| 98 | /// used instead, if 0 is specified the result will be compuated always by approximation.</param>
|
---|
| 99 | /// <returns>True if H0 (p1 equals p2) can be rejected, False otherwise</returns>
|
---|
| 100 | public static bool TwoTailedTest(double[] p1, double[] p2, double alpha, int approximationLevel) {
|
---|
| 101 | Array.Sort<double>(p1);
|
---|
| 102 | Array.Sort<double>(p2);
|
---|
| 103 | int n1 = p1.Length, n2 = p2.Length;
|
---|
| 104 |
|
---|
| 105 | double R1 = MannWhitneyWilcoxonTest.CalculateRankSumForP1(p1, p2);
|
---|
| 106 |
|
---|
| 107 | if (n1 <= Math.Min(approximationLevel, 20) && n2 <= Math.Min(approximationLevel, 20)) {
|
---|
| 108 | return MannWhitneyWilcoxonTest.AbsolutePValue(R1, n1, n2, alpha, true);
|
---|
| 109 | } else { // normal approximation
|
---|
| 110 | return MannWhitneyWilcoxonTest.ApproximatePValue(R1, n1, n2, true) <= alpha;
|
---|
| 111 | }
|
---|
| 112 | }
|
---|
| 113 |
|
---|
| 114 | /// <summary>
|
---|
| 115 | /// Calculates the p-value of a 2-tailed Mann Whitney Wilcoxon U-test (also known as Mann Whitney rank sum test).
|
---|
| 116 | /// The test performs a ranking of the data and returns the p-value indicating the level of significance
|
---|
| 117 | /// at which the hypothesis H0 can be rejected.
|
---|
| 118 | /// Caution: This method approximates the ranks in p1 and p2 with a normal distribution and should only be called
|
---|
| 119 | /// when the sample size is at least 10 in both samples.
|
---|
| 120 | ///
|
---|
| 121 | /// </summary>
|
---|
| 122 | /// <param name="p1">Array with samples from population 1</param>
|
---|
| 123 | /// <param name="p2">Array with samples from population 2</param>
|
---|
| 124 | /// <returns>The p-value of the test</returns>
|
---|
| 125 | public static double TwoTailedTest(int[] p1, int[] p2) {
|
---|
[1548] | 126 | Array.Sort<int>(p1);
|
---|
| 127 | Array.Sort<int>(p2);
|
---|
[1517] | 128 | double rank = MannWhitneyWilcoxonTest.CalculateRankSumForP1(p1, p2);
|
---|
| 129 | return MannWhitneyWilcoxonTest.ApproximatePValue(rank, p1.Length, p2.Length, true);
|
---|
| 130 | }
|
---|
| 131 |
|
---|
| 132 | /// <summary>
|
---|
| 133 | /// Calculates whether a 2-tailed Mann Whitney Wilcoxon U-test (also known as Mann Whitney rank sum test)
|
---|
| 134 | /// would reject the hypothesis H0 that the given two populations stem from the same distribution.
|
---|
| 135 | /// The alternative hypothesis would be that they come from different distributions.
|
---|
| 136 | /// The test performs a ranking of the data and decides based on the ranking whehter to reject the
|
---|
| 137 | /// hypothesis or not.
|
---|
| 138 | ///
|
---|
| 139 | /// If there are less than 20 samples in each population this decision is based on a table lookup.
|
---|
| 140 | /// If one array consists of more than 20 samples, it will approximate the distribution by a normal
|
---|
| 141 | /// distribution. In the case of the table lookup, alpha is restricted to 0.01, 0.05, and 0.1.
|
---|
| 142 | /// </summary>
|
---|
| 143 | /// <param name="p1">Array with samples from population 1</param>
|
---|
| 144 | /// <param name="p2">Array with samples from population 2</param>
|
---|
| 145 | /// <param name="alpha">The significance level. If p1 and p2 are both smaller or equal than 20, the decision is based on three tables that represent significance at 0.01, 0.05, and 0.1.</param>
|
---|
| 146 | /// <returns>True if H0 (p1 equals p2) can be rejected, False otherwise</returns>
|
---|
| 147 | public static bool TwoTailedTest(int[] p1, int[] p2, double alpha) {
|
---|
| 148 | return MannWhitneyWilcoxonTest.TwoTailedTest(p1, p2, alpha, 20);
|
---|
| 149 | }
|
---|
| 150 |
|
---|
| 151 | /// <summary>
|
---|
| 152 | /// Calculates whether a 2-tailed Mann Whitney Wilcoxon U-test (also known as Mann Whitney rank sum test)
|
---|
| 153 | /// would reject the hypothesis H0 that the given two populations stem from the same distribution.
|
---|
| 154 | /// The alternative hypothesis would be that they come from different distributions.
|
---|
| 155 | /// The test performs a ranking of the data and decides based on the ranking whehter to reject the
|
---|
| 156 | /// hypothesis or not.
|
---|
| 157 | ///
|
---|
| 158 | /// If there are less than <paramref name="approximationLevel"/> samples in each population this
|
---|
| 159 | /// decision is based on a table lookup.
|
---|
| 160 | /// If one array consists of more than <paramref name="approximationLevel"/> samples, it will
|
---|
| 161 | /// approximate the distribution by a normal distribution. In the case of the table lookup,
|
---|
| 162 | /// alpha is restricted to 0.01, 0.05, and 0.1.
|
---|
| 163 | /// </summary>
|
---|
| 164 | /// <param name="p1">Array with samples from population 1</param>
|
---|
| 165 | /// <param name="p2">Array with samples from population 2</param>
|
---|
| 166 | /// <param name="alpha">The significance level. If p1 and p2 are both smaller or equal than 20,
|
---|
| 167 | /// the decision is based on three tables that represent significance at 0.01, 0.05, and 0.1.</param>
|
---|
| 168 | /// <param name="approximationLevel">Defines at which sample size to use normal approximation,
|
---|
| 169 | /// instead of the table lookup. If a higher value than 20 is specified, the value 20 will be
|
---|
| 170 | /// used instead, if 0 is specified the result will be compuated always by approximation.</param>
|
---|
| 171 | /// <returns>True if H0 (p1 equals p2) can be rejected, False otherwise</returns>
|
---|
| 172 | public static bool TwoTailedTest(int[] p1, int[] p2, double alpha, int approximationLevel) {
|
---|
| 173 | Array.Sort<int>(p1);
|
---|
| 174 | Array.Sort<int>(p2);
|
---|
| 175 | int n1 = p1.Length, n2 = p2.Length;
|
---|
| 176 |
|
---|
| 177 | double R1 = MannWhitneyWilcoxonTest.CalculateRankSumForP1(p1, p2);
|
---|
| 178 |
|
---|
| 179 | if (n1 <= Math.Min(approximationLevel, 20) && n2 <= Math.Min(approximationLevel, 20)) {
|
---|
| 180 | return MannWhitneyWilcoxonTest.AbsolutePValue(R1, n1, n2, alpha, true);
|
---|
| 181 | } else {
|
---|
| 182 | return MannWhitneyWilcoxonTest.ApproximatePValue(R1, n1, n2, true) <= alpha;
|
---|
| 183 | }
|
---|
| 184 | }
|
---|
| 185 |
|
---|
| 186 | private static bool AbsolutePValue(double rank, int nRank, int nOther, double alpha, bool twoTailed) {
|
---|
| 187 | double U1 = rank - (double)(nRank * (nRank + 1) / 2);
|
---|
| 188 | double U2 = (double)(nRank * nOther) - U1;
|
---|
[1548] | 189 | if (alpha < 0.05) {
|
---|
[1517] | 190 | return (Math.Min(U1, U2) <= table001[nRank - 1, nOther - 1]);
|
---|
[1548] | 191 | } else if (alpha < 0.1) {
|
---|
[1517] | 192 | return (Math.Min(U1, U2) <= table005[nRank - 1, nOther - 1]);
|
---|
[1548] | 193 | } else if (Math.Abs(alpha - 0.1) < 1e-07) {
|
---|
[1517] | 194 | return (Math.Min(U1, U2) <= table01[nRank - 1, nOther - 1]);
|
---|
| 195 | } else throw new ArgumentException("ERROR in MannWhitneyWilcoxonTest: alpha must be <= 0.1");
|
---|
| 196 | }
|
---|
| 197 |
|
---|
| 198 | private static double ApproximatePValue(double rank, int nRank, int nOther, bool twoTailed) {
|
---|
| 199 | double U1 = rank - (double)(nRank * (nRank + 1) / 2);
|
---|
| 200 | double U2 = (double)(nRank * nOther) - U1;
|
---|
| 201 |
|
---|
| 202 | double mu = nRank * nOther / 2;
|
---|
| 203 | double sigma = Math.Sqrt(nRank * nOther * (nRank + nOther + 1) / 12);
|
---|
| 204 | double z = (Math.Min(U1, U2) - mu) / sigma;
|
---|
[1548] | 205 | if (twoTailed) {
|
---|
| 206 | return 2 * ProbabilityOfZValue(z);
|
---|
| 207 | } else return ProbabilityOfZValue(z);
|
---|
[1517] | 208 | }
|
---|
| 209 |
|
---|
| 210 | // FIXME: when there's equality among some samples within a population the rank also needs to be averaged
|
---|
| 211 | private static double CalculateRankSumForP1(int[] p1, int[] p2) {
|
---|
| 212 | int rank = 0, p2Idx = 0;
|
---|
| 213 | int n1 = p1.Length, n2 = p2.Length;
|
---|
| 214 | double R1 = 0;
|
---|
| 215 |
|
---|
| 216 | for (int i = 0; i < n1; i++) {
|
---|
| 217 | rank++;
|
---|
| 218 | if (p1[i] < p2[p2Idx]) {
|
---|
| 219 | R1 += rank;
|
---|
| 220 | } if (p1[i] == p2[p2Idx]) {
|
---|
| 221 | int startRank = rank;
|
---|
| 222 | rank++;
|
---|
| 223 | int commonRank = startRank + rank;
|
---|
| 224 | int starti = i;
|
---|
| 225 | while (i + 1 < n1 && Math.Abs(p1[i + 1] - p2[p2Idx]) < 1e-07) {
|
---|
| 226 | i++;
|
---|
| 227 | rank++;
|
---|
| 228 | commonRank += rank;
|
---|
| 229 | }
|
---|
| 230 | while (p2Idx + 1 < n2 && Math.Abs(p1[i] - p2[p2Idx + 1]) < 1e-07) {
|
---|
| 231 | p2Idx++;
|
---|
| 232 | rank++;
|
---|
| 233 | commonRank += rank;
|
---|
| 234 | }
|
---|
| 235 | p2Idx++;
|
---|
[1549] | 236 | R1 += (double)((i - starti + 1) * commonRank) / (double)(rank - startRank + 1);
|
---|
[1517] | 237 | } else {
|
---|
| 238 | p2Idx++;
|
---|
| 239 | i--;
|
---|
| 240 | }
|
---|
| 241 | if (p2Idx == n2) {
|
---|
| 242 | i++; rank++; // calculate the rest of the ranks for p1
|
---|
| 243 | while (i < n1) {
|
---|
| 244 | R1 += rank;
|
---|
| 245 | rank++;
|
---|
| 246 | i++;
|
---|
| 247 | }
|
---|
| 248 | break;
|
---|
| 249 | }
|
---|
| 250 | }
|
---|
| 251 | return R1;
|
---|
| 252 | }
|
---|
| 253 |
|
---|
| 254 | private static double CalculateRankSumForP2(int[] p1, int[] p2) {
|
---|
| 255 | int n1 = p1.Length, n2 = p2.Length;
|
---|
| 256 | double completeRankSum = (double)((n1 + n2 + 1) * (n1 + n2)) / 2.0;
|
---|
| 257 | return completeRankSum - CalculateRankSumForP1(p1, p2);
|
---|
| 258 | }
|
---|
| 259 |
|
---|
| 260 | // FIXME: when there's equality among some samples within a population the rank also needs to be averaged
|
---|
| 261 | private static double CalculateRankSumForP1(double[] p1, double[] p2) {
|
---|
| 262 | int rank = 0, n1 = p1.Length, n2 = p2.Length, p2Idx = 0;
|
---|
| 263 | double R1 = 0;
|
---|
| 264 |
|
---|
| 265 | for (int i = 0; i < n1; i++) {
|
---|
| 266 | rank++;
|
---|
| 267 | if (Math.Abs(p1[i] - p2[p2Idx]) < 1e-07) {
|
---|
| 268 | int startRank = rank;
|
---|
| 269 | rank++;
|
---|
| 270 | int commonRank = startRank + rank;
|
---|
| 271 | int starti = i;
|
---|
| 272 | while (i + 1 < n1 && Math.Abs(p1[i + 1] - p2[p2Idx]) < 1e-07) {
|
---|
| 273 | i++;
|
---|
| 274 | rank++;
|
---|
| 275 | commonRank += rank;
|
---|
| 276 | }
|
---|
| 277 | while (p2Idx + 1 < n2 && Math.Abs(p1[i] - p2[p2Idx + 1]) < 1e-07) {
|
---|
| 278 | p2Idx++;
|
---|
| 279 | rank++;
|
---|
| 280 | commonRank += rank;
|
---|
| 281 | }
|
---|
| 282 | p2Idx++;
|
---|
[1549] | 283 | R1 += (double)((i - starti + 1) * commonRank) / (double)(rank - startRank + 1);
|
---|
[1517] | 284 | } else if (p1[i] < p2[p2Idx]) {
|
---|
| 285 | R1 += rank;
|
---|
| 286 | } else {
|
---|
| 287 | p2Idx++;
|
---|
| 288 | i--;
|
---|
| 289 | }
|
---|
| 290 | if (p2Idx == n2) {
|
---|
| 291 | i++; rank++; // calculate the rest of the ranks for p1
|
---|
| 292 | while (i < n1) {
|
---|
| 293 | R1 += rank;
|
---|
| 294 | rank++;
|
---|
| 295 | i++;
|
---|
| 296 | }
|
---|
| 297 | break;
|
---|
| 298 | }
|
---|
| 299 | }
|
---|
| 300 | return R1;
|
---|
| 301 | }
|
---|
| 302 |
|
---|
| 303 | private static double CalculateRankSumForP2(double[] p1, double[] p2) {
|
---|
| 304 | int n1 = p1.Length, n2 = p2.Length;
|
---|
| 305 | double completeRankSum = (double)((n1 + n2 + 1) * (n1 + n2)) / 2.0;
|
---|
| 306 | return completeRankSum - CalculateRankSumForP1(p1, p2);
|
---|
| 307 | }
|
---|
| 308 |
|
---|
| 309 | // taken from: http://www.fourmilab.ch/rpkp/experiments/analysis/zCalc.html (in public domain)
|
---|
| 310 | private static double ProbabilityOfZValue(double z) {
|
---|
| 311 | double y, x, w, zMax = 6.0;
|
---|
| 312 | if (Math.Abs(z) < 1e-07) {
|
---|
| 313 | x = 0.0;
|
---|
| 314 | } else {
|
---|
| 315 | y = 0.5 * Math.Abs(z);
|
---|
| 316 | if (y > (zMax * 0.5)) {
|
---|
| 317 | x = 1.0;
|
---|
| 318 | } else if (y < 1.0) {
|
---|
| 319 | w = y * y;
|
---|
| 320 | x = ((((((((0.000124818987 * w
|
---|
| 321 | - 0.001075204047) * w + 0.005198775019) * w
|
---|
| 322 | - 0.019198292004) * w + 0.059054035642) * w
|
---|
| 323 | - 0.151968751364) * w + 0.319152932694) * w
|
---|
| 324 | - 0.531923007300) * w + 0.797884560593) * y * 2.0;
|
---|
| 325 | } else {
|
---|
| 326 | y -= 2.0;
|
---|
| 327 | x = (((((((((((((-0.000045255659 * y
|
---|
| 328 | + 0.000152529290) * y - 0.000019538132) * y
|
---|
| 329 | - 0.000676904986) * y + 0.001390604284) * y
|
---|
| 330 | - 0.000794620820) * y - 0.002034254874) * y
|
---|
| 331 | + 0.006549791214) * y - 0.010557625006) * y
|
---|
| 332 | + 0.011630447319) * y - 0.009279453341) * y
|
---|
| 333 | + 0.005353579108) * y - 0.002141268741) * y
|
---|
| 334 | + 0.000535310849) * y + 0.999936657524;
|
---|
| 335 | }
|
---|
| 336 | }
|
---|
| 337 | return (z > 0.0) ? ((x + 1.0) * 0.5) : ((1.0 - x) * 0.5);
|
---|
| 338 | }
|
---|
| 339 |
|
---|
| 340 | #region probability tables
|
---|
| 341 | // table stems from
|
---|
| 342 | // Roy C. Milton. An Extended Table of Critical Values for the Mann-Whitney (Wilcoxon) Two-Sample Statistic. Journal of the American Statistical Association, Vol. 59, No. 307 (Sep., 1964), pp. 925-934.
|
---|
| 343 | private static int[,] table01 = new int[20, 20] {
|
---|
| 344 | /* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20*/
|
---|
| 345 | /* 1 */{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0},
|
---|
| 346 | /* 2 */{ -1, -1, -1, -1, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4},
|
---|
| 347 | /* 3 */{ -1, -1, 0, 0, 1, 2, 2, 3, 4, 4, 5, 5, 6, 7, 7, 8, 9, 9, 10, 11},
|
---|
| 348 | /* 4 */{ -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18},
|
---|
| 349 | /* 5 */{ -1, 0, 1, 2, 4, 5, 6, 8, 9, 11, 12, 13, 15, 16, 18, 19, 20, 22, 23, 25},
|
---|
| 350 | /* 6 */{ -1, 0, 2, 3, 5, 7, 8, 10, 12, 14, 16, 17, 19, 21, 23, 25, 26, 28, 30, 32},
|
---|
| 351 | /* 7 */{ -1, 0, 2, 4, 6, 8, 11, 13, 15, 17, 19, 21, 24, 26, 28, 30, 33, 35, 37, 39},
|
---|
| 352 | /* 8 */{ -1, 1, 3, 5, 8, 10, 13, 15, 18, 20, 23, 26, 28, 31, 33, 36, 39, 41, 44, 47},
|
---|
| 353 | /* 9 */{ -1, 1, 4, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54},
|
---|
| 354 | /* 10 */{ -1, 1, 4, 7, 11, 14, 17, 20, 24, 27, 31, 34, 37, 41, 44, 48, 51, 55, 58, 62},
|
---|
| 355 | /* 11 */{ -1, 1, 5, 8, 12, 16, 19, 23, 27, 31, 34, 38, 42, 46, 50, 54, 57, 61, 65, 69},
|
---|
| 356 | /* 12 */{ -1, 2, 5, 9, 13, 17, 21, 26, 30, 34, 38, 42, 47, 51, 55, 60, 64, 68, 72, 77},
|
---|
| 357 | /* 13 */{ -1, 2, 6, 10, 15, 19, 24, 28, 33, 37, 42, 47, 51, 56, 61, 65, 70, 75, 80, 84},
|
---|
| 358 | /* 14 */{ -1, 3, 7, 11, 16, 21, 26, 31, 36, 41, 46, 51, 56, 61, 66, 71, 77, 82, 87, 92},
|
---|
| 359 | /* 15 */{ -1, 3, 7, 12, 18, 23, 28, 33, 39, 44, 50, 55, 61, 66, 72, 77, 83, 88, 94, 100},
|
---|
| 360 | /* 16 */{ -1, 3, 8, 14, 19, 25, 30, 36, 42, 48, 54, 60, 65, 71, 77, 83, 89, 95, 101, 107},
|
---|
| 361 | /* 17 */{ -1, 3, 9, 15, 20, 26, 33, 39, 45, 51, 57, 64, 70, 77, 83, 89, 96, 102, 109, 115},
|
---|
| 362 | /* 18 */{ -1, 4, 9, 16, 22, 28, 35, 41, 48, 55, 61, 68, 75, 82, 88, 95, 102, 109, 116, 123},
|
---|
| 363 | /* 19 */{ 0, 4, 10, 17, 23, 30, 37, 44, 51, 58, 65, 72, 80, 87, 94, 101, 109, 116, 123, 130},
|
---|
| 364 | /* 20 */{ 0, 4, 11, 18, 25, 32, 39, 47, 54, 62, 69, 77, 84, 92, 100, 107, 115, 123, 130, 138}};
|
---|
| 365 |
|
---|
| 366 | // table stems from http://math.usask.ca/~laverty/S245/Tables/wmw.pdf
|
---|
| 367 | private static int[,] table005 = new int[20, 20] {
|
---|
| 368 | /* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20*/
|
---|
| 369 | /* 1 */{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
|
---|
| 370 | /* 2 */{ -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2},
|
---|
| 371 | /* 3 */{ -1, -1, -1, -1, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8},
|
---|
| 372 | /* 4 */{ -1, -1, -1, 0, 1, 2, 3, 4, 4, 5, 6, 7, 8, 9, 10, 11, 11, 12, 13, 13},
|
---|
| 373 | /* 5 */{ -1, -1, 0, 1, 2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 20},
|
---|
| 374 | /* 6 */{ -1, -1, 1, 2, 3, 5, 6, 8, 10, 11, 13, 14, 16, 17, 19, 21, 22, 24, 25, 27},
|
---|
| 375 | /* 7 */{ -1, -1, 1, 3, 5, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34},
|
---|
| 376 | /* 8 */{ -1, 0, 2, 4, 6, 8, 10, 13, 15, 17, 19, 22, 24, 26, 29, 31, 34, 36, 38, 41},
|
---|
| 377 | /* 9 */{ -1, 0, 2, 4, 7, 10, 12, 15, 17, 21, 23, 26, 28, 31, 34, 37, 39, 42, 45, 48},
|
---|
| 378 | /* 10 */{ -1, 0, 3, 5, 8, 11, 14, 17, 20, 23, 26, 29, 33, 36, 39, 42, 45, 48, 52, 55},
|
---|
| 379 | /* 11 */{ -1, 0, 3, 6, 9, 13, 16, 19, 23, 26, 30, 33, 37, 40, 44, 47, 51, 55, 58, 62},
|
---|
| 380 | /* 12 */{ -1, 1, 4, 7, 11, 14, 18, 22, 26, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69},
|
---|
| 381 | /* 13 */{ -1, 1, 4, 8, 12, 16, 20, 24, 28, 33, 37, 41, 45, 50, 54, 59, 63, 67, 72, 76},
|
---|
| 382 | /* 14 */{ -1, 1, 5, 9, 13, 17, 22, 26, 31, 36, 40, 45, 50, 55, 59, 64, 67, 74, 78, 83},
|
---|
| 383 | /* 15 */{ -1, 1, 5, 10, 14, 19, 24, 29, 34, 39, 44, 49, 54, 59, 64, 70, 75, 80, 85, 90},
|
---|
| 384 | /* 16 */{ -1, 1, 6, 11, 15, 21, 26, 31, 37, 42, 47, 53, 59, 64, 70, 75, 81, 86, 92, 98},
|
---|
| 385 | /* 17 */{ -1, 2, 6, 11, 17, 22, 28, 34, 39, 45, 51, 57, 63, 67, 75, 81, 87, 93, 99, 105},
|
---|
| 386 | /* 18 */{ -1, 2, 7, 12, 18, 24, 30, 36, 42, 48, 55, 61, 67, 74, 80, 86, 93, 99, 106, 112},
|
---|
| 387 | /* 19 */{ -1, 2, 7, 13, 19, 25, 32, 38, 45, 52, 58, 65, 72, 78, 85, 92, 99, 106, 113, 119},
|
---|
| 388 | /* 20 */{ -1, 2, 8, 14, 20, 27, 34, 41, 48, 55, 62, 69, 76, 83, 90, 98, 105, 112, 119, 127}};
|
---|
| 389 |
|
---|
| 390 | // table from: http://math.usask.ca/~laverty/S245/Tables/wmw.pdf
|
---|
| 391 | private static int[,] table001 = new int[20, 20] {
|
---|
| 392 | /* 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20*/
|
---|
| 393 | /* 1 */{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
|
---|
| 394 | /* 2 */{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0},
|
---|
| 395 | /* 3 */{ -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 3, 3},
|
---|
| 396 | /* 4 */{ -1, -1, -1, -1, -1, 0, 0, 1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 7, 8},
|
---|
| 397 | /* 5 */{ -1, -1, -1, -1, 0, 1, 1, 2, 3, 4, 5, 6, 7, 7, 8, 9, 10, 11, 12, 13},
|
---|
| 398 | /* 6 */{ -1, -1, -1, 0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 15, 16, 17, 18},
|
---|
| 399 | /* 7 */{ -1, -1, -1, 0, 1, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 18, 19, 21, 22, 24},
|
---|
| 400 | /* 8 */{ -1, -1, -1, 1, 2, 4, 6, 7, 9, 11, 13, 15, 17, 18, 20, 22, 24, 26, 28, 30},
|
---|
| 401 | /* 9 */{ -1, -1, 0, 1, 3, 5, 7, 9, 11, 13, 16, 18, 20, 22, 24, 27, 29, 31, 33, 36},
|
---|
| 402 | /* 10 */{ -1, -1, 0, 2, 4, 6, 9, 11, 13, 16, 18, 21, 24, 26, 29, 31, 34, 37, 39, 42},
|
---|
| 403 | /* 11 */{ -1, -1, 0, 2, 5, 7, 10, 13, 16, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 46},
|
---|
| 404 | /* 12 */{ -1, -1, 1, 3, 6, 9, 12, 15, 18, 21, 24, 27, 31, 34, 37, 41, 44, 47, 51, 54},
|
---|
| 405 | /* 13 */{ -1, -1, 1, 3, 7, 10, 13, 17, 20, 24, 27, 31, 34, 38, 42, 45, 49, 53, 56, 60},
|
---|
| 406 | /* 14 */{ -1, -1, 1, 4, 7, 11, 15, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 63, 67},
|
---|
| 407 | /* 15 */{ -1, -1, 2, 5, 8, 12, 16, 20, 24, 29, 33, 37, 42, 46, 51, 55, 60, 64, 69, 73},
|
---|
| 408 | /* 16 */{ -1, -1, 2, 5, 9, 13, 18, 22, 27, 31, 36, 41, 45, 50, 55, 60, 65, 70, 74, 79},
|
---|
| 409 | /* 17 */{ -1, -1, 2, 6, 10, 15, 19, 24, 29, 34, 39, 44, 49, 54, 60, 65, 70, 75, 81, 86},
|
---|
| 410 | /* 18 */{ -1, -1, 2, 6, 11, 16, 21, 26, 31, 37, 42, 47, 53, 58, 64, 70, 75, 81, 87, 92},
|
---|
| 411 | /* 19 */{ -1, 0, 3, 7, 12, 17, 22, 28, 33, 39, 45, 51, 56, 63, 69, 74, 81, 87, 93, 99},
|
---|
| 412 | /* 20 */{ -1, 0, 3, 8, 13, 18, 24, 30, 36, 42, 46, 54, 60, 67, 73, 79, 86, 92, 99, 105}};
|
---|
| 413 | #endregion
|
---|
| 414 |
|
---|
| 415 | }
|
---|
| 416 | }
|
---|