[6081] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[7259] | 3 | * Copyright (C) 2002-2012 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[6081] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Linq;
|
---|
| 25 | using HeuristicLab.Common;
|
---|
| 26 | using HeuristicLab.Core;
|
---|
| 27 | using HeuristicLab.Data;
|
---|
[6082] | 28 | using HeuristicLab.Optimization;
|
---|
[6081] | 29 | using HeuristicLab.Parameters;
|
---|
| 30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 31 |
|
---|
| 32 | namespace HeuristicLab.Selection {
|
---|
| 33 | /// <summary>
|
---|
| 34 | /// The generalized rank selection operator selects qualities by rank with a varying focus on better qualities. It is implemented as described in Tate, D. M. and Smith, A. E. 1995. A genetic approach to the quadratic assignment problem. Computers & Operations Research, vol. 22, pp. 73-83.
|
---|
| 35 | /// </summary>
|
---|
| 36 | [Item("GeneralizedRankSelector", "The generalized rank selection operator selects qualities by rank with a varying focus on better qualities. It is implemented as described in Tate, D. M. and Smith, A. E. 1995. A genetic approach to the quadratic assignment problem. Computers & Operations Research, vol. 22, pp. 73-83.")]
|
---|
| 37 | [StorableClass]
|
---|
[6082] | 38 | public sealed class GeneralizedRankSelector : StochasticSingleObjectiveSelector, ISelector {
|
---|
[6081] | 39 |
|
---|
| 40 | public IValueLookupParameter<DoubleValue> PressureParameter {
|
---|
| 41 | get { return (IValueLookupParameter<DoubleValue>)Parameters["Pressure"]; }
|
---|
| 42 | }
|
---|
| 43 |
|
---|
| 44 | [StorableConstructor]
|
---|
| 45 | private GeneralizedRankSelector(bool deserializing) : base(deserializing) { }
|
---|
| 46 | private GeneralizedRankSelector(GeneralizedRankSelector original, Cloner cloner) : base(original, cloner) { }
|
---|
| 47 | public GeneralizedRankSelector()
|
---|
| 48 | : base() {
|
---|
| 49 | Parameters.Add(new ValueLookupParameter<DoubleValue>("Pressure", "The selection pressure that is applied, must lie in the interval [1;infinity). A pressure of 1 equals random selection, higher pressure values focus on selecting better qualities.", new DoubleValue(2)));
|
---|
| 50 | }
|
---|
| 51 |
|
---|
| 52 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 53 | return new GeneralizedRankSelector(this, cloner);
|
---|
| 54 | }
|
---|
| 55 |
|
---|
| 56 | protected override IScope[] Select(List<IScope> scopes) {
|
---|
| 57 | int count = NumberOfSelectedSubScopesParameter.ActualValue.Value;
|
---|
| 58 | bool copy = CopySelectedParameter.Value.Value;
|
---|
| 59 | IRandom random = RandomParameter.ActualValue;
|
---|
| 60 | bool maximization = MaximizationParameter.ActualValue.Value;
|
---|
| 61 | ItemArray<DoubleValue> qualities = QualityParameter.ActualValue;
|
---|
| 62 | IScope[] selected = new IScope[count];
|
---|
| 63 | double pressure = PressureParameter.ActualValue.Value;
|
---|
| 64 |
|
---|
[6511] | 65 | var ordered = qualities.Select((x, index) => new KeyValuePair<int, double>(index, x.Value)).OrderBy(x => x.Value).ToList();
|
---|
[6081] | 66 | if (maximization) ordered.Reverse();
|
---|
| 67 |
|
---|
| 68 | int m = scopes.Count;
|
---|
| 69 | for (int i = 0; i < count; i++) {
|
---|
| 70 | double rand = 1 + random.NextDouble() * (Math.Pow(m, 1.0 / pressure) - 1);
|
---|
| 71 | int selIdx = (int)Math.Floor(Math.Pow(rand, pressure) - 1);
|
---|
| 72 |
|
---|
| 73 | if (copy) {
|
---|
[6511] | 74 | selected[i] = (IScope)scopes[ordered[selIdx].Key].Clone();
|
---|
[6081] | 75 | } else {
|
---|
[6511] | 76 | int idx = ordered[selIdx].Key;
|
---|
[6508] | 77 | selected[i] = scopes[idx];
|
---|
| 78 | scopes.RemoveAt(idx);
|
---|
| 79 | ordered.RemoveAt(selIdx);
|
---|
| 80 | for (int j = 0; j < ordered.Count; j++) {
|
---|
| 81 | var o = ordered[j];
|
---|
[6511] | 82 | if (o.Key > idx) ordered[j] = new KeyValuePair<int, double>(o.Key - 1, o.Value);
|
---|
[6508] | 83 | }
|
---|
[6081] | 84 | m--;
|
---|
| 85 | }
|
---|
| 86 | }
|
---|
| 87 | return selected;
|
---|
| 88 | }
|
---|
| 89 | }
|
---|
| 90 | }
|
---|