Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.SGA/3.3/SGAOperator.cs @ 2861

Last change on this file since 2861 was 2834, checked in by swagner, 15 years ago

Operator architecture refactoring (#95)

  • worked on operators, engines, and optimization
File size: 9.7 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using HeuristicLab.Core;
23using HeuristicLab.Data;
24using HeuristicLab.Evolutionary;
25using HeuristicLab.Operators;
26using HeuristicLab.Parameters;
27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
28using HeuristicLab.Selection;
29
30namespace HeuristicLab.SGA {
31  /// <summary>
32  /// An operator which represents a Standard Genetic Algorithm.
33  /// </summary>
34  [Item("SGAOperator", "An operator which represents a Standard Genetic Algorithm.")]
35  [Creatable("Test")]
36  public class SGAOperator : AlgorithmOperator {
37    [Storable]
38    private ProportionalSelector proportionalSelector;
39
40    #region Parameter properties
41    public ValueLookupParameter<IRandom> RandomParameter {
42      get { return (ValueLookupParameter<IRandom>)Parameters["Random"]; }
43    }
44    public ValueLookupParameter<BoolData> MaximizationParameter {
45      get { return (ValueLookupParameter<BoolData>)Parameters["Maximization"]; }
46    }
47    public SubScopesLookupParameter<DoubleData> QualityParameter {
48      get { return (SubScopesLookupParameter<DoubleData>)Parameters["Quality"]; }
49    }
50    public ValueLookupParameter<IOperator> CrossoverOperatorParameter {
51      get { return (ValueLookupParameter<IOperator>)Parameters["CrossoverOperator"]; }
52    }
53    public ValueLookupParameter<DoubleData> MutationProbabilityParameter {
54      get { return (ValueLookupParameter<DoubleData>)Parameters["MutationProbability"]; }
55    }
56    public ValueLookupParameter<IOperator> MutationOperatorParameter {
57      get { return (ValueLookupParameter<IOperator>)Parameters["MutationOperator"]; }
58    }
59    public ValueLookupParameter<IOperator> SolutionEvaluatorParameter {
60      get { return (ValueLookupParameter<IOperator>)Parameters["SolutionEvaluator"]; }
61    }
62    public ValueLookupParameter<IntData> ElitesParameter {
63      get { return (ValueLookupParameter<IntData>)Parameters["Elites"]; }
64    }
65    public ValueLookupParameter<IntData> MaximumGenerationsParameter {
66      get { return (ValueLookupParameter<IntData>)Parameters["MaximumGenerations"]; }
67    }
68    private ScopeParameter CurrentScopeParameter {
69      get { return (ScopeParameter)Parameters["CurrentScope"]; }
70    }
71
72    public IScope CurrentScope {
73      get { return CurrentScopeParameter.ActualValue; }
74    }
75    #endregion
76
77    public SGAOperator()
78      : base() {
79      #region Create parameters
80      Parameters.Add(new ValueLookupParameter<IRandom>("Random", "A pseudo random number generator."));
81      Parameters.Add(new ValueLookupParameter<BoolData>("Maximization", "True if the problem is a maximization problem, otherwise false."));
82      Parameters.Add(new SubScopesLookupParameter<DoubleData>("Quality", "The value which represents the quality of a solution."));
83      Parameters.Add(new ValueLookupParameter<IOperator>("CrossoverOperator", "The operator used to cross solutions."));
84      Parameters.Add(new ValueLookupParameter<DoubleData>("MutationProbability", "The probability that the mutation operator is applied on a solution."));
85      Parameters.Add(new ValueLookupParameter<IOperator>("MutationOperator", "The operator used to mutate solutions."));
86      Parameters.Add(new ValueLookupParameter<IOperator>("SolutionEvaluator", "The operator used to evaluate solutions."));
87      Parameters.Add(new ValueLookupParameter<IntData>("Elites", "The numer of elite solutions which are kept in each generation."));
88      Parameters.Add(new ValueLookupParameter<IntData>("MaximumGenerations", "The maximum number of generations which should be processed."));
89      Parameters.Add(new ScopeParameter("CurrentScope", "The current scope which represents a population of solutions on which the SGA should be applied."));
90      #endregion
91
92      #region Create operator graph
93      SubScopesSorter subScopesSorter1 = new SubScopesSorter();
94      proportionalSelector = new ProportionalSelector();
95      SequentialSubScopesProcessor sequentialSubScopesProcessor1 = new SequentialSubScopesProcessor();
96      ChildrenCreator childrenCreator = new ChildrenCreator();
97      UniformSequentialSubScopesProcessor uniformSequentialSubScopesProcessor = new UniformSequentialSubScopesProcessor();
98      Placeholder crossover = new Placeholder();
99      StochasticBranch stochasticBranch = new StochasticBranch();
100      Placeholder mutator = new Placeholder();
101      Placeholder evaluator = new Placeholder();
102      SubScopesRemover subScopesRemover = new SubScopesRemover();
103      SubScopesSorter subScopesSorter2 = new SubScopesSorter();
104      SequentialSubScopesProcessor sequentialSubScopesProcessor2 = new SequentialSubScopesProcessor();
105      LeftSelector leftSelector = new LeftSelector();
106      RightReducer rightReducer = new RightReducer();
107      MergingReducer mergingReducer = new MergingReducer();
108      IntCounter intCounter = new IntCounter();
109      Comparator comparator = new Comparator();
110      ConditionalBranch conditionalBranch = new ConditionalBranch();
111
112      subScopesSorter1.DescendingParameter.ActualName = "Maximization";
113      subScopesSorter1.ValueParameter.ActualName = "Quality";
114      OperatorGraph.InitialOperator = subScopesSorter1;
115      subScopesSorter1.Successor = proportionalSelector;
116
117      proportionalSelector.CopySelected = new BoolData(true);
118      proportionalSelector.MaximizationParameter.ActualName = "Maximization";
119      // NOTE: NumberOfSelectedSubScopes is set dynamically when the operator is executed
120      proportionalSelector.QualityParameter.ActualName = "Quality";
121      proportionalSelector.RandomParameter.ActualName = "Random";
122      proportionalSelector.Windowing = new BoolData(true);
123      proportionalSelector.Successor = sequentialSubScopesProcessor1;
124
125      sequentialSubScopesProcessor1.Operators.Add(new EmptyOperator());
126      sequentialSubScopesProcessor1.Operators.Add(childrenCreator);
127      sequentialSubScopesProcessor1.Successor = sequentialSubScopesProcessor2;
128
129      childrenCreator.ParentsPerChild = new IntData(2);
130      childrenCreator.Successor = uniformSequentialSubScopesProcessor;
131
132      uniformSequentialSubScopesProcessor.Operator = crossover;
133      uniformSequentialSubScopesProcessor.Successor = subScopesSorter2;
134
135      crossover.Name = "CrossoverOperator";
136      crossover.OperatorParameter.ActualName = "CrossoverOperator";
137      crossover.Successor = stochasticBranch;
138
139      stochasticBranch.FirstBranch = mutator;
140      stochasticBranch.ProbabilityParameter.ActualName = "MutationProbability";
141      stochasticBranch.RandomParameter.ActualName = "Random";
142      stochasticBranch.SecondBranch = null;
143      stochasticBranch.Successor = evaluator;
144
145      mutator.Name = "MutationOperator";
146      mutator.OperatorParameter.ActualName = "MutationOperator";
147      mutator.Successor = null;
148
149      evaluator.Name = "SolutionEvaluator";
150      evaluator.OperatorParameter.ActualName = "SolutionEvaluator";
151      evaluator.Successor = subScopesRemover;
152
153      subScopesRemover.RemoveAllSubScopes = true;
154      subScopesRemover.Successor = null;
155
156      subScopesSorter2.DescendingParameter.ActualName = "Maximization";
157      subScopesSorter2.ValueParameter.ActualName = "Quality";
158      subScopesSorter2.Successor = null;
159
160      sequentialSubScopesProcessor2.Operators.Add(leftSelector);
161      sequentialSubScopesProcessor2.Operators.Add(new EmptyOperator());
162      sequentialSubScopesProcessor2.Successor = mergingReducer;
163
164      leftSelector.CopySelected = new BoolData(false);
165      leftSelector.NumberOfSelectedSubScopesParameter.ActualName = "Elites";
166      leftSelector.Successor = rightReducer;
167
168      rightReducer.Successor = null;
169
170      mergingReducer.Successor = intCounter;
171
172      intCounter.Increment = new IntData(1);
173      intCounter.ValueParameter.ActualName = "Generations";
174      intCounter.Successor = comparator;
175
176      comparator.Comparison = new ComparisonData(Comparison.GreaterOrEqual);
177      comparator.LeftSideParameter.ActualName = "Generations";
178      comparator.ResultParameter.ActualName = "Terminate";
179      comparator.RightSideParameter.ActualName = "MaximumGenerations";
180      comparator.Successor = conditionalBranch;
181
182      conditionalBranch.ConditionParameter.ActualName = "Terminate";
183      conditionalBranch.FalseBranch = subScopesSorter1;
184      conditionalBranch.TrueBranch = null;
185      conditionalBranch.Successor = null;
186      #endregion
187    }
188
189    public override IDeepCloneable Clone(Cloner cloner) {
190      SGAOperator clone = (SGAOperator)base.Clone(cloner);
191      clone.proportionalSelector = (ProportionalSelector)cloner.Clone(proportionalSelector);
192      return clone;
193    }
194
195    public override IOperation Apply() {
196      int populationSize = CurrentScope.SubScopes.Count;
197      // dynamically set the number of parents which are selected for reproduction
198      proportionalSelector.NumberOfSelectedSubScopesParameter.Value = new IntData(2 * (populationSize - ElitesParameter.ActualValue.Value));
199      return base.Apply();
200    }
201  }
202}
Note: See TracBrowser for help on using the repository browser.