[104] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
| 3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
| 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
| 22 | using System;
|
---|
| 23 | using System.Collections.Generic;
|
---|
| 24 | using System.Text;
|
---|
| 25 | using HeuristicLab.Core;
|
---|
| 26 | using HeuristicLab.Data;
|
---|
| 27 |
|
---|
| 28 | namespace HeuristicLab.RealVector {
|
---|
| 29 | public class MichalewiczNonUniformOnePositionManipulator : RealVectorManipulatorBase {
|
---|
| 30 | public override string Description {
|
---|
| 31 | get { return
|
---|
| 32 | @"Non-uniformly distributed change of one position of a real vector (Michalewicz 1992)
|
---|
| 33 | Initially, the space will be searched uniformly and very locally at later stages. This increases the probability of generating the new number closer to its successor instead of a random number.
|
---|
| 34 |
|
---|
| 35 | Michalewicz, Z. (1992). Genetic Algorithms + Data Structures = Evolution Programs. Springer Verlag.";
|
---|
| 36 | }
|
---|
| 37 | }
|
---|
| 38 |
|
---|
| 39 | public MichalewiczNonUniformOnePositionManipulator()
|
---|
| 40 | : base() {
|
---|
| 41 | AddVariableInfo(new VariableInfo("Minimum", "Minimum of the sampling range for the vector element (included)", typeof(DoubleData), VariableKind.In));
|
---|
| 42 | AddVariableInfo(new VariableInfo("Maximum", "Maximum of the sampling range for the vector element (excluded)", typeof(DoubleData), VariableKind.In));
|
---|
| 43 | AddVariableInfo(new VariableInfo("CurrentGeneration", "Current Generation of the algorithm", typeof(IntData), VariableKind.In));
|
---|
| 44 | AddVariableInfo(new VariableInfo("MaximumGenerations", "Maximum number of Generations", typeof(IntData), VariableKind.In));
|
---|
| 45 | VariableInfo genDepInfo = new VariableInfo("GenerationsDependency", "Specifies the degree of dependency on the number of generations", typeof(IntData), VariableKind.In);
|
---|
| 46 | genDepInfo.Local = true;
|
---|
| 47 | AddVariableInfo(genDepInfo);
|
---|
| 48 | AddVariable(new Variable("GenerationsDependency", new IntData(5)));
|
---|
| 49 | }
|
---|
| 50 |
|
---|
| 51 | protected override double[] Manipulate(IScope scope, IRandom random, double[] vector) {
|
---|
| 52 | double min = GetVariableValue<DoubleData>("Minimum", scope, true).Data;
|
---|
| 53 | double max = GetVariableValue<DoubleData>("Maximum", scope, true).Data;
|
---|
| 54 | int currentGeneration = GetVariableValue<IntData>("CurrentGeneration", scope, true).Data;
|
---|
| 55 | int maximumGenerations = GetVariableValue<IntData>("MaximumGenerations", scope, true).Data;
|
---|
| 56 | int generationsDependency = GetVariableValue<IntData>("GenerationsDependency", scope, true).Data;
|
---|
| 57 | return Apply(random, vector, min, max, currentGeneration, maximumGenerations, generationsDependency);
|
---|
| 58 | }
|
---|
| 59 |
|
---|
| 60 | public static double[] Apply(IRandom random, double[] vector, double min, double max, int currentGeneration, int maximumGenerations, int generationsDependency) {
|
---|
| 61 | int length = vector.Length;
|
---|
| 62 | double[] result = new double[length];
|
---|
| 63 | int pos = random.Next(length);
|
---|
| 64 |
|
---|
| 65 | if (random.NextDouble() < 0.5) {
|
---|
| 66 | vector[pos] = vector[pos] + Delta(random, currentGeneration, max - vector[pos], maximumGenerations, generationsDependency);
|
---|
| 67 | } else {
|
---|
| 68 | vector[pos] = vector[pos] - Delta(random, currentGeneration, vector[pos] - min, maximumGenerations, generationsDependency);
|
---|
| 69 | }
|
---|
| 70 | return vector;
|
---|
| 71 | }
|
---|
| 72 |
|
---|
| 73 | // returns a value between 0 and y (both included)
|
---|
| 74 | private static double Delta(IRandom random, int currentGeneration, double y, int maximumGenerations, int generationsDependency) {
|
---|
| 75 | return y * (1 - Math.Pow(random.NextDouble(), Math.Pow(1 - currentGeneration / maximumGenerations, generationsDependency)));
|
---|
| 76 | }
|
---|
| 77 | }
|
---|
| 78 | }
|
---|