1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Text;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Constraints;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Random {
|
---|
30 | public class NormalRandomizer : OperatorBase {
|
---|
31 | private static int MAX_NUMBER_OF_TRIES = 100;
|
---|
32 |
|
---|
33 | public override string Description {
|
---|
34 | get { return "Initializes the value of variable 'Value' to a random value normally distributed with 'Mu' and 'Sigma'."; }
|
---|
35 | }
|
---|
36 |
|
---|
37 | public double Mu {
|
---|
38 | get { return ((DoubleData)GetVariable("Mu").Value).Data; }
|
---|
39 | set { ((DoubleData)GetVariable("Mu").Value).Data = value; }
|
---|
40 | }
|
---|
41 | public double Sigma {
|
---|
42 | get { return ((DoubleData)GetVariable("Sigma").Value).Data; }
|
---|
43 | set { ((DoubleData)GetVariable("Sigma").Value).Data = value; }
|
---|
44 | }
|
---|
45 |
|
---|
46 | public NormalRandomizer() {
|
---|
47 | AddVariableInfo(new VariableInfo("Mu", "Parameter mu of the normal distribution", typeof(DoubleData), VariableKind.None));
|
---|
48 | GetVariableInfo("Mu").Local = true;
|
---|
49 | AddVariable(new Variable("Mu", new DoubleData(0.0)));
|
---|
50 |
|
---|
51 | AddVariableInfo(new VariableInfo("Sigma", "Parameter sigma of the normal distribution", typeof(DoubleData), VariableKind.None));
|
---|
52 | GetVariableInfo("Sigma").Local = true;
|
---|
53 | AddVariable(new Variable("Sigma", new DoubleData(1.0)));
|
---|
54 |
|
---|
55 | AddVariableInfo(new VariableInfo("Value", "The value to manipulate (actual type is one of: IntData, DoubleData, ConstrainedIntData, ConstrainedDoubleData)", typeof(IObjectData), VariableKind.In));
|
---|
56 | AddVariableInfo(new VariableInfo("Random", "The random generator to use", typeof(MersenneTwister), VariableKind.In));
|
---|
57 | }
|
---|
58 |
|
---|
59 | public override IOperation Apply(IScope scope) {
|
---|
60 | IObjectData value = GetVariableValue<IObjectData>("Value", scope, false);
|
---|
61 | MersenneTwister mt = GetVariableValue<MersenneTwister>("Random", scope, true);
|
---|
62 | double mu = GetVariableValue<DoubleData>("Mu", scope, true).Data;
|
---|
63 | double sigma = GetVariableValue<DoubleData>("Sigma", scope, true).Data;
|
---|
64 |
|
---|
65 | NormalDistributedRandom n = new NormalDistributedRandom(mt, mu, sigma);
|
---|
66 | RandomizeNormal(value, n);
|
---|
67 | return null;
|
---|
68 | }
|
---|
69 |
|
---|
70 | private void RandomizeNormal(IObjectData value, NormalDistributedRandom n) {
|
---|
71 | // dispatch manually based on dynamic type
|
---|
72 | if (value is IntData)
|
---|
73 | RandomizeNormal((IntData)value, n);
|
---|
74 | else if (value is ConstrainedIntData)
|
---|
75 | RandomizeNormal((ConstrainedIntData)value, n);
|
---|
76 | else if (value is DoubleData)
|
---|
77 | RandomizeNormal((DoubleData)value, n);
|
---|
78 | else if (value is ConstrainedDoubleData)
|
---|
79 | RandomizeNormal((ConstrainedDoubleData)value, n);
|
---|
80 | else throw new InvalidOperationException("Can't handle type " + value.GetType().Name);
|
---|
81 | }
|
---|
82 |
|
---|
83 | public void RandomizeNormal(ConstrainedDoubleData data, NormalDistributedRandom normal) {
|
---|
84 | for (int tries = MAX_NUMBER_OF_TRIES; tries >= 0; tries--) {
|
---|
85 | double r = normal.NextDouble();
|
---|
86 | if (IsIntegerConstrained(data)) {
|
---|
87 | r = Math.Round(r);
|
---|
88 | }
|
---|
89 | if (data.TrySetData(r)) {
|
---|
90 | return;
|
---|
91 | }
|
---|
92 | }
|
---|
93 | throw new InvalidOperationException("Couldn't find a valid value in 100 tries with mu=" + normal.Mu + " sigma=" + normal.Sigma);
|
---|
94 | }
|
---|
95 |
|
---|
96 | public void RandomizeNormal(ConstrainedIntData data, NormalDistributedRandom normal) {
|
---|
97 | for (int tries = MAX_NUMBER_OF_TRIES; tries >= 0; tries--) {
|
---|
98 | double r = normal.NextDouble();
|
---|
99 | if (data.TrySetData((int)Math.Round(r))) // since r is a continuous normally distributed random variable rounding should be OK
|
---|
100 | return;
|
---|
101 | }
|
---|
102 | throw new InvalidOperationException("Couldn't find a valid value");
|
---|
103 | }
|
---|
104 |
|
---|
105 | public void RandomizeNormal(DoubleData data, NormalDistributedRandom normal) {
|
---|
106 | data.Data = normal.NextDouble();
|
---|
107 | }
|
---|
108 |
|
---|
109 | public void RandomizeNormal(IntData data, NormalDistributedRandom normal) {
|
---|
110 | data.Data = (int)Math.Round(normal.NextDouble());
|
---|
111 | }
|
---|
112 |
|
---|
113 |
|
---|
114 | private bool IsIntegerConstrained(ConstrainedDoubleData data) {
|
---|
115 | foreach (IConstraint constraint in data.Constraints) {
|
---|
116 | if (constraint is IsIntegerConstraint) {
|
---|
117 | return true;
|
---|
118 | }
|
---|
119 | }
|
---|
120 | return false;
|
---|
121 | }
|
---|
122 | }
|
---|
123 | }
|
---|