1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Text;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 | using HeuristicLab.Constraints;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Random {
|
---|
30 | public class NormalRandomAdder : OperatorBase {
|
---|
31 | private static int MAX_NUMBER_OF_TRIES = 100;
|
---|
32 |
|
---|
33 | public override string Description {
|
---|
34 | get {
|
---|
35 | return @"Samples a normally distributed (mu, sigma * shakingFactor) random variable and adds the result to variable 'Value'.
|
---|
36 |
|
---|
37 | If a constraint for the allowed range of 'Value' is defined and the result of the operation would be smaller then
|
---|
38 | the smallest allowed value then 'Value' is set to the lower bound and vice versa for the upper bound.";
|
---|
39 | }
|
---|
40 | }
|
---|
41 |
|
---|
42 | public double Mu {
|
---|
43 | get { return ((DoubleData)GetVariable("Mu").Value).Data; }
|
---|
44 | set { ((DoubleData)GetVariable("Mu").Value).Data = value; }
|
---|
45 | }
|
---|
46 | public double Sigma {
|
---|
47 | get { return ((DoubleData)GetVariable("Sigma").Value).Data; }
|
---|
48 | set { ((DoubleData)GetVariable("Sigma").Value).Data = value; }
|
---|
49 | }
|
---|
50 |
|
---|
51 | public NormalRandomAdder() {
|
---|
52 | AddVariableInfo(new VariableInfo("Mu", "Parameter mu of the normal distribution", typeof(DoubleData), VariableKind.None));
|
---|
53 | GetVariableInfo("Mu").Local = true;
|
---|
54 | AddVariable(new Variable("Mu", new DoubleData(0.0)));
|
---|
55 |
|
---|
56 | AddVariableInfo(new VariableInfo("Sigma", "Parameter sigma of the normal distribution", typeof(DoubleData), VariableKind.None));
|
---|
57 | GetVariableInfo("Sigma").Local = true;
|
---|
58 | AddVariable(new Variable("Sigma", new DoubleData(1.0)));
|
---|
59 |
|
---|
60 | AddVariableInfo(new VariableInfo("Value", "The value to manipulate (actual type is one of: IntData, DoubleData, ConstrainedIntData, ConstrainedDoubleData)", typeof(IObjectData), VariableKind.In));
|
---|
61 | AddVariableInfo(new VariableInfo("ShakingFactor", "Determines the force of the shaking factor (effective sigma = sigma * shakingFactor)", typeof(DoubleData), VariableKind.In));
|
---|
62 | AddVariableInfo(new VariableInfo("Random", "The random generator to use", typeof(MersenneTwister), VariableKind.In));
|
---|
63 | }
|
---|
64 |
|
---|
65 | public override IOperation Apply(IScope scope) {
|
---|
66 | IObjectData value = GetVariableValue<IObjectData>("Value", scope, false);
|
---|
67 | MersenneTwister mt = GetVariableValue<MersenneTwister>("Random", scope, true);
|
---|
68 | double factor = GetVariableValue<DoubleData>("ShakingFactor", scope, true).Data;
|
---|
69 | double mu = GetVariableValue<DoubleData>("Mu", scope, true).Data;
|
---|
70 | double sigma = GetVariableValue<DoubleData>("Sigma", scope, true).Data;
|
---|
71 | NormalDistributedRandom normal = new NormalDistributedRandom(mt, mu, sigma * factor);
|
---|
72 |
|
---|
73 | AddNormal(value, normal);
|
---|
74 | return null;
|
---|
75 | }
|
---|
76 |
|
---|
77 | private void AddNormal(IObjectData value, NormalDistributedRandom normal) {
|
---|
78 | // dispatch manually based on dynamic type
|
---|
79 | if (value is IntData)
|
---|
80 | AddNormal((IntData)value, normal);
|
---|
81 | else if (value is ConstrainedIntData)
|
---|
82 | AddNormal((ConstrainedIntData)value, normal);
|
---|
83 | else if (value is ConstrainedDoubleData)
|
---|
84 | AddNormal((ConstrainedDoubleData)value, normal);
|
---|
85 | else if (value is DoubleData)
|
---|
86 | AddNormal((DoubleData)value, normal);
|
---|
87 | else throw new InvalidOperationException("Can't handle type " + value.GetType().Name);
|
---|
88 | }
|
---|
89 | public void AddNormal(DoubleData data, NormalDistributedRandom normal) {
|
---|
90 | data.Data += normal.NextDouble();
|
---|
91 | }
|
---|
92 |
|
---|
93 | public void AddNormal(ConstrainedDoubleData data, NormalDistributedRandom normal) {
|
---|
94 | for (int tries = MAX_NUMBER_OF_TRIES; tries >= 0; tries--) {
|
---|
95 | double newValue = data.Data + normal.NextDouble();
|
---|
96 | if (IsIntegerConstrained(data)) {
|
---|
97 | newValue = Math.Round(newValue);
|
---|
98 | }
|
---|
99 | if (data.TrySetData(newValue)) {
|
---|
100 | return;
|
---|
101 | }
|
---|
102 | }
|
---|
103 | throw new InvalidProgramException("Coudn't find a valid value");
|
---|
104 | }
|
---|
105 |
|
---|
106 | public void AddNormal(IntData data, NormalDistributedRandom normal) {
|
---|
107 | data.Data = (int)Math.Round(data.Data + normal.NextDouble());
|
---|
108 | }
|
---|
109 |
|
---|
110 | public void AddNormal(ConstrainedIntData data, NormalDistributedRandom normal) {
|
---|
111 | for (int tries = MAX_NUMBER_OF_TRIES; tries >= 0; tries--) {
|
---|
112 | if (data.TrySetData((int)Math.Round(data.Data + normal.NextDouble())))
|
---|
113 | return;
|
---|
114 | }
|
---|
115 | throw new InvalidProgramException("Couldn't find a valid value.");
|
---|
116 | }
|
---|
117 |
|
---|
118 | private bool IsIntegerConstrained(ConstrainedDoubleData data) {
|
---|
119 | foreach (IConstraint constraint in data.Constraints) {
|
---|
120 | if (constraint is IsIntegerConstraint) {
|
---|
121 | return true;
|
---|
122 | }
|
---|
123 | }
|
---|
124 | return false;
|
---|
125 | }
|
---|
126 | }
|
---|
127 | }
|
---|