1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2008 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using System.Collections.Generic;
|
---|
24 | using System.Text;
|
---|
25 | using HeuristicLab.Core;
|
---|
26 | using HeuristicLab.Data;
|
---|
27 |
|
---|
28 | namespace HeuristicLab.Random {
|
---|
29 | /// <summary>
|
---|
30 | /// Normally distributed random number generator that adds the generated value to the existing value
|
---|
31 | /// in the specified scope.
|
---|
32 | /// </summary>
|
---|
33 | public class NormalRandomAdder : OperatorBase {
|
---|
34 | private static int MAX_NUMBER_OF_TRIES = 100;
|
---|
35 |
|
---|
36 | /// <inheritdoc select="summary"/>
|
---|
37 | public override string Description {
|
---|
38 | get {
|
---|
39 | return @"Samples a normally distributed (mu, sigma * shakingFactor) random variable and adds the result to variable 'Value'.
|
---|
40 |
|
---|
41 | If a constraint for the allowed range of 'Value' is defined and the result of the operation would be smaller then
|
---|
42 | the smallest allowed value then 'Value' is set to the lower bound and vice versa for the upper bound.";
|
---|
43 | }
|
---|
44 | }
|
---|
45 |
|
---|
46 | /// <summary>
|
---|
47 | /// Gets or sets the value for µ.
|
---|
48 | /// </summary>
|
---|
49 | /// <remarks>Gets or sets the variable with the name <c>Mu</c> through the method
|
---|
50 | /// <see cref="OperatorBase.GetVariable"/> of class <see cref="OperatorBase"/>.</remarks>
|
---|
51 | public double Mu {
|
---|
52 | get { return ((DoubleData)GetVariable("Mu").Value).Data; }
|
---|
53 | set { ((DoubleData)GetVariable("Mu").Value).Data = value; }
|
---|
54 | }
|
---|
55 | /// <summary>
|
---|
56 | /// Gets or sets the value for sigma.
|
---|
57 | /// </summary>
|
---|
58 | /// <remarks>Gets or sets the variable with the name <c>Sigma</c> through the method
|
---|
59 | /// <see cref="OperatorBase.GetVariable"/> of class <see cref="OperatorBase"/>.</remarks>
|
---|
60 | public double Sigma {
|
---|
61 | get { return ((DoubleData)GetVariable("Sigma").Value).Data; }
|
---|
62 | set { ((DoubleData)GetVariable("Sigma").Value).Data = value; }
|
---|
63 | }
|
---|
64 |
|
---|
65 | /// <summary>
|
---|
66 | /// Initializes a new instance of <see cref="NormalRandomAdder"/> with five variable infos
|
---|
67 | /// (<c>Mu</c>, <c>Sigma</c>, <c>Value</c>, <c>ShakingFactor</c> and <c>Random</c>).
|
---|
68 | /// </summary>
|
---|
69 | public NormalRandomAdder() {
|
---|
70 | AddVariableInfo(new VariableInfo("Mu", "Parameter mu of the normal distribution", typeof(DoubleData), VariableKind.In));
|
---|
71 | GetVariableInfo("Mu").Local = true;
|
---|
72 | AddVariable(new Variable("Mu", new DoubleData(0.0)));
|
---|
73 |
|
---|
74 | AddVariableInfo(new VariableInfo("Sigma", "Parameter sigma of the normal distribution", typeof(DoubleData), VariableKind.In));
|
---|
75 | GetVariableInfo("Sigma").Local = true;
|
---|
76 | AddVariable(new Variable("Sigma", new DoubleData(1.0)));
|
---|
77 |
|
---|
78 | AddVariableInfo(new VariableInfo("Value", "The value to manipulate (actual type is one of: IntData, DoubleData", typeof(IObjectData), VariableKind.In | VariableKind.Out));
|
---|
79 | AddVariableInfo(new VariableInfo("MinValue", "(optional) The minimal value", typeof(DoubleData), VariableKind.In));
|
---|
80 | AddVariableInfo(new VariableInfo("MaxValue", "(optional) The maximal value", typeof(DoubleData), VariableKind.In));
|
---|
81 | AddVariableInfo(new VariableInfo("ShakingFactor", "Determines the force of the shaking factor (effective sigma = sigma * shakingFactor)", typeof(DoubleData), VariableKind.In));
|
---|
82 | AddVariableInfo(new VariableInfo("Random", "The random generator to use", typeof(MersenneTwister), VariableKind.In));
|
---|
83 | }
|
---|
84 |
|
---|
85 | /// <summary>
|
---|
86 | /// Generates a new normally distributed random number and adds it to the specified value in the
|
---|
87 | /// given <paramref name="scope"/>.
|
---|
88 | /// </summary>
|
---|
89 | /// <param name="scope">The scope where to add the generated random number.</param>
|
---|
90 | /// <returns><c>null</c>.</returns>
|
---|
91 | public override IOperation Apply(IScope scope) {
|
---|
92 | IObjectData value = GetVariableValue<IObjectData>("Value", scope, false);
|
---|
93 | MersenneTwister mt = GetVariableValue<MersenneTwister>("Random", scope, true);
|
---|
94 | double factor = GetVariableValue<DoubleData>("ShakingFactor", scope, true).Data;
|
---|
95 | double mu = GetVariableValue<DoubleData>("Mu", scope, true).Data;
|
---|
96 | double sigma = GetVariableValue<DoubleData>("Sigma", scope, true).Data;
|
---|
97 | DoubleData minValueData = GetVariableValue<DoubleData>("MinValue", scope, true, false);
|
---|
98 | double minValue = minValueData == null ? double.MinValue : minValueData.Data;
|
---|
99 | DoubleData maxValueData = GetVariableValue<DoubleData>("MaxValue", scope, true, false);
|
---|
100 | double maxValue = maxValueData == null ? double.MaxValue : maxValueData.Data;
|
---|
101 |
|
---|
102 | NormalDistributedRandom normal = new NormalDistributedRandom(mt, mu, sigma * factor);
|
---|
103 |
|
---|
104 | AddNormal(value, normal, minValue, maxValue);
|
---|
105 | return null;
|
---|
106 | }
|
---|
107 |
|
---|
108 | private void AddNormal(IObjectData value, NormalDistributedRandom normal, double minValue, double maxValue) {
|
---|
109 | // dispatch manually based on dynamic type
|
---|
110 | if (value is IntData)
|
---|
111 | AddNormal((IntData)value, normal, minValue, maxValue);
|
---|
112 | else if (value is DoubleData)
|
---|
113 | AddNormal((DoubleData)value, normal, minValue, maxValue);
|
---|
114 | else throw new InvalidOperationException("Can't handle type " + value.GetType().Name);
|
---|
115 | }
|
---|
116 |
|
---|
117 | /// <summary>
|
---|
118 | /// Generates a new double random number and adds it to the value of the given <paramref name="data"/>
|
---|
119 | /// checking its constraints.
|
---|
120 | /// </summary>
|
---|
121 | /// <exception cref="InvalidProgramException">Thrown when with the current settings no valid value
|
---|
122 | /// could be found.</exception>
|
---|
123 | /// <param name="data">The double object where to add the random number</param>
|
---|
124 | /// <param name="normal">The continuous, normally distributed random variable.</param>
|
---|
125 | /// <param name="minValue">The minimal value allowed for the double object.</param>
|
---|
126 | /// <param name="maxValue">The maximal value allowed for the double object.</param>
|
---|
127 | public void AddNormal(DoubleData data, NormalDistributedRandom normal, double minValue, double maxValue) {
|
---|
128 | for (int tries = MAX_NUMBER_OF_TRIES; tries >= 0; tries--) {
|
---|
129 | double newValue = data.Data + normal.NextDouble();
|
---|
130 | if (newValue >= minValue && newValue < maxValue) {
|
---|
131 | data.Data = newValue;
|
---|
132 | return;
|
---|
133 | }
|
---|
134 | }
|
---|
135 | throw new InvalidProgramException("Coudn't find a valid value");
|
---|
136 | }
|
---|
137 |
|
---|
138 | /// <summary>
|
---|
139 | /// Generates a new int random number and adds it to the value of the given <paramref name="data"/>
|
---|
140 | /// checking its constraints.
|
---|
141 | /// </summary>
|
---|
142 | /// <exception cref="InvalidProgramException">Thrown when with the current settings no valid value
|
---|
143 | /// could be found.</exception>
|
---|
144 | /// <param name="data">The int object where to add the generated value.</param>
|
---|
145 | /// <param name="normal">The continuous, normally distributed random variable.</param>
|
---|
146 | /// <param name="minValue">The minimal value allowed for the double object.</param>
|
---|
147 | /// <param name="maxValue">The maximal value allowed for the double object.</param>
|
---|
148 | public void AddNormal(IntData data, NormalDistributedRandom normal, double minValue, double maxValue) {
|
---|
149 | for (int tries = MAX_NUMBER_OF_TRIES; tries >= 0; tries--) {
|
---|
150 | int newValue = (int)Math.Round(data.Data + normal.NextDouble());
|
---|
151 | if (newValue >= minValue && newValue < maxValue) {
|
---|
152 | data.Data = newValue;
|
---|
153 | return;
|
---|
154 | }
|
---|
155 | }
|
---|
156 | throw new InvalidProgramException("Couldn't find a valid value.");
|
---|
157 | }
|
---|
158 | }
|
---|
159 | }
|
---|