[3097] | 1 | #region License Information
|
---|
| 2 | /* HeuristicLab
|
---|
[5445] | 3 | * Copyright (C) 2002-2011 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
[3097] | 4 | *
|
---|
| 5 | * This file is part of HeuristicLab.
|
---|
| 6 | *
|
---|
| 7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
| 8 | * it under the terms of the GNU General Public License as published by
|
---|
| 9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 10 | * (at your option) any later version.
|
---|
| 11 | *
|
---|
| 12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 15 | * GNU General Public License for more details.
|
---|
| 16 | *
|
---|
| 17 | * You should have received a copy of the GNU General Public License
|
---|
| 18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 19 | */
|
---|
| 20 | #endregion
|
---|
| 21 |
|
---|
[3107] | 22 | using System.Linq;
|
---|
[4722] | 23 | using HeuristicLab.Common;
|
---|
[3097] | 24 | using HeuristicLab.Core;
|
---|
| 25 | using HeuristicLab.Data;
|
---|
| 26 | using HeuristicLab.Encodings.PermutationEncoding;
|
---|
| 27 | using HeuristicLab.Operators;
|
---|
[3107] | 28 | using HeuristicLab.Optimization;
|
---|
[3097] | 29 | using HeuristicLab.Parameters;
|
---|
| 30 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
| 31 |
|
---|
[3158] | 32 | namespace HeuristicLab.Problems.TravelingSalesman {
|
---|
[3097] | 33 | /// <summary>
|
---|
[3616] | 34 | /// An operator for analyzing the best solution of Traveling Salesman Problems given in path representation using city coordinates.
|
---|
[3097] | 35 | /// </summary>
|
---|
[3663] | 36 | [Item("BestTSPSolutionAnalyzer", "An operator for analyzing the best solution of Traveling Salesman Problems given in path representation using city coordinates.")]
|
---|
[3097] | 37 | [StorableClass]
|
---|
[3663] | 38 | public sealed class BestTSPSolutionAnalyzer : SingleSuccessorOperator, IAnalyzer {
|
---|
[3787] | 39 | public LookupParameter<BoolValue> MaximizationParameter {
|
---|
| 40 | get { return (LookupParameter<BoolValue>)Parameters["Maximization"]; }
|
---|
| 41 | }
|
---|
[3662] | 42 | public LookupParameter<DoubleMatrix> CoordinatesParameter {
|
---|
| 43 | get { return (LookupParameter<DoubleMatrix>)Parameters["Coordinates"]; }
|
---|
[3097] | 44 | }
|
---|
[3662] | 45 | public ScopeTreeLookupParameter<Permutation> PermutationParameter {
|
---|
| 46 | get { return (ScopeTreeLookupParameter<Permutation>)Parameters["Permutation"]; }
|
---|
[3097] | 47 | }
|
---|
[3662] | 48 | public ScopeTreeLookupParameter<DoubleValue> QualityParameter {
|
---|
| 49 | get { return (ScopeTreeLookupParameter<DoubleValue>)Parameters["Quality"]; }
|
---|
[3097] | 50 | }
|
---|
[3662] | 51 | public LookupParameter<PathTSPTour> BestSolutionParameter {
|
---|
| 52 | get { return (LookupParameter<PathTSPTour>)Parameters["BestSolution"]; }
|
---|
[3107] | 53 | }
|
---|
[3662] | 54 | public ValueLookupParameter<ResultCollection> ResultsParameter {
|
---|
| 55 | get { return (ValueLookupParameter<ResultCollection>)Parameters["Results"]; }
|
---|
[3107] | 56 | }
|
---|
[3787] | 57 | public LookupParameter<DoubleValue> BestKnownQualityParameter {
|
---|
| 58 | get { return (LookupParameter<DoubleValue>)Parameters["BestKnownQuality"]; }
|
---|
| 59 | }
|
---|
| 60 | public LookupParameter<Permutation> BestKnownSolutionParameter {
|
---|
| 61 | get { return (LookupParameter<Permutation>)Parameters["BestKnownSolution"]; }
|
---|
| 62 | }
|
---|
[3097] | 63 |
|
---|
[4722] | 64 | [StorableConstructor]
|
---|
| 65 | private BestTSPSolutionAnalyzer(bool deserializing) : base(deserializing) { }
|
---|
| 66 | private BestTSPSolutionAnalyzer(BestTSPSolutionAnalyzer original, Cloner cloner) : base(original, cloner) { }
|
---|
| 67 | public override IDeepCloneable Clone(Cloner cloner) {
|
---|
| 68 | return new BestTSPSolutionAnalyzer(this, cloner);
|
---|
| 69 | }
|
---|
[3663] | 70 | public BestTSPSolutionAnalyzer()
|
---|
[3097] | 71 | : base() {
|
---|
[3787] | 72 | Parameters.Add(new LookupParameter<BoolValue>("Maximization", "True if the problem is a maximization problem."));
|
---|
[3097] | 73 | Parameters.Add(new LookupParameter<DoubleMatrix>("Coordinates", "The x- and y-Coordinates of the cities."));
|
---|
[3659] | 74 | Parameters.Add(new ScopeTreeLookupParameter<Permutation>("Permutation", "The TSP solutions given in path representation from which the best solution should be analyzed."));
|
---|
| 75 | Parameters.Add(new ScopeTreeLookupParameter<DoubleValue>("Quality", "The qualities of the TSP solutions which should be analyzed."));
|
---|
[3616] | 76 | Parameters.Add(new LookupParameter<PathTSPTour>("BestSolution", "The best TSP solution."));
|
---|
| 77 | Parameters.Add(new ValueLookupParameter<ResultCollection>("Results", "The result collection where the best TSP solution should be stored."));
|
---|
[3787] | 78 | Parameters.Add(new LookupParameter<DoubleValue>("BestKnownQuality", "The quality of the best known solution of this TSP instance."));
|
---|
| 79 | Parameters.Add(new LookupParameter<Permutation>("BestKnownSolution", "The best known solution of this TSP instance."));
|
---|
[3097] | 80 | }
|
---|
| 81 |
|
---|
| 82 | public override IOperation Apply() {
|
---|
| 83 | DoubleMatrix coordinates = CoordinatesParameter.ActualValue;
|
---|
[3107] | 84 | ItemArray<Permutation> permutations = PermutationParameter.ActualValue;
|
---|
| 85 | ItemArray<DoubleValue> qualities = QualityParameter.ActualValue;
|
---|
[3616] | 86 | ResultCollection results = ResultsParameter.ActualValue;
|
---|
[3787] | 87 | bool max = MaximizationParameter.ActualValue.Value;
|
---|
| 88 | DoubleValue bestKnownQuality = BestKnownQualityParameter.ActualValue;
|
---|
[3107] | 89 |
|
---|
[3787] | 90 | int i = -1;
|
---|
| 91 | if (!max)
|
---|
| 92 | i = qualities.Select((x, index) => new { index, x.Value }).OrderBy(x => x.Value).First().index;
|
---|
| 93 | else i = qualities.Select((x, index) => new { index, x.Value }).OrderByDescending(x => x.Value).First().index;
|
---|
[4068] | 94 |
|
---|
[3787] | 95 | if (bestKnownQuality == null ||
|
---|
| 96 | max && qualities[i].Value > bestKnownQuality.Value ||
|
---|
| 97 | !max && qualities[i].Value < bestKnownQuality.Value) {
|
---|
| 98 | BestKnownQualityParameter.ActualValue = new DoubleValue(qualities[i].Value);
|
---|
| 99 | BestKnownSolutionParameter.ActualValue = (Permutation)permutations[i].Clone();
|
---|
| 100 | }
|
---|
[3107] | 101 |
|
---|
[3616] | 102 | PathTSPTour tour = BestSolutionParameter.ActualValue;
|
---|
| 103 | if (tour == null) {
|
---|
[3692] | 104 | tour = new PathTSPTour(coordinates, (Permutation)permutations[i].Clone(), new DoubleValue(qualities[i].Value));
|
---|
[3616] | 105 | BestSolutionParameter.ActualValue = tour;
|
---|
| 106 | results.Add(new Result("Best TSP Solution", tour));
|
---|
| 107 | } else {
|
---|
[3787] | 108 | if (max && tour.Quality.Value < qualities[i].Value ||
|
---|
| 109 | !max && tour.Quality.Value > qualities[i].Value) {
|
---|
[3616] | 110 | tour.Coordinates = coordinates;
|
---|
[3692] | 111 | tour.Permutation = (Permutation)permutations[i].Clone();
|
---|
| 112 | tour.Quality.Value = qualities[i].Value;
|
---|
[3616] | 113 | }
|
---|
[3107] | 114 | }
|
---|
[3616] | 115 |
|
---|
[3097] | 116 | return base.Apply();
|
---|
| 117 | }
|
---|
| 118 | }
|
---|
| 119 | }
|
---|