Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.TestFunctions/3.3/Evaluators/ZakharovEvaluator.cs @ 3520

Last change on this file since 3520 was 3376, checked in by swagner, 15 years ago

Moved interfaces and classes for deep cloning from HeuristicLab.Core to HeuristicLab.Common (#975).

File size: 3.8 KB
Line 
1#region License Information
2/* HeuristicLab
3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using HeuristicLab.Common;
24using HeuristicLab.Core;
25using HeuristicLab.Data;
26using HeuristicLab.Encodings.RealVectorEncoding;
27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
28
29namespace HeuristicLab.Problems.TestFunctions {
30  /// <summary>
31  /// The Zakharov function is implemented as described in Hedar, A. & Fukushima, M. 2004. Heuristic pattern search and its hybridization with simulated annealing for nonlinear global optimization. Optimization Methods and Software 19, pp. 291-308, Taylor & Francis.
32  /// </summary>
33  [Item("ZakharovEvaluator", "Evaluates the Zakharov function on a given point. The optimum of this function is 0 at the origin. It is implemented as described in Hedar, A. & Fukushima, M. 2004. Heuristic pattern search and its hybridization with simulated annealing for nonlinear global optimization. Optimization Methods and Software 19, pp. 291-308, Taylor & Francis.")]
34  [StorableClass]
35  public class ZakharovEvaluator : SingleObjectiveTestFunctionProblemEvaluator {
36    /// <summary>
37    /// Returns false as the Zakharov function is a minimization problem.
38    /// </summary>
39    public override bool Maximization {
40      get { return false; }
41    }
42    /// <summary>
43    /// Gets the optimum function value (0).
44    /// </summary>
45    public override double BestKnownQuality {
46      get { return 0; }
47    }
48    /// <summary>
49    /// Gets the lower and upper bound of the function.
50    /// </summary>
51    public override DoubleMatrix Bounds {
52      get { return new DoubleMatrix(new double[,] { { -5, 10 } }); }
53    }
54    /// <summary>
55    /// Gets the minimum problem size (1).
56    /// </summary>
57    public override int MinimumProblemSize {
58      get { return 1; }
59    }
60    /// <summary>
61    /// Gets the (theoretical) maximum problem size (2^31 - 1).
62    /// </summary>
63    public override int MaximumProblemSize {
64      get { return int.MaxValue; }
65    }
66
67    /// <summary>
68    /// Evaluates the test function for a specific <paramref name="point"/>.
69    /// </summary>
70    /// <param name="point">N-dimensional point for which the test function should be evaluated.</param>
71    /// <returns>The result value of the Zakharov function at the given point.</returns>
72    public static double Apply(RealVector point) {
73      int length = point.Length;
74      double s1 = 0;
75      double s2 = 0;
76
77      for (int i = 0; i < length; i++) {
78        s1 += point[i] * point[i];
79        s2 += 0.5 * i * point[i];
80      }
81      return s1 + (s2 * s2) + (s2 * s2 * s2 * s2);
82    }
83
84    /// <summary>
85    /// Evaluates the test function for a specific <paramref name="point"/>.
86    /// </summary>
87    /// <remarks>Calls <see cref="Apply"/>.</remarks>
88    /// <param name="point">N-dimensional point for which the test function should be evaluated.</param>
89    /// <returns>The result value of the Zakharov function at the given point.</returns>
90    protected override double EvaluateFunction(RealVector point) {
91      return Apply(point);
92    }
93  }
94}
Note: See TracBrowser for help on using the repository browser.