Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.TestFunctions/3.3/Evaluators/SchwefelEvaluator.cs @ 4695

Last change on this file since 4695 was 4068, checked in by swagner, 14 years ago

Sorted usings and removed unused usings in entire solution (#1094)

File size: 4.1 KB
RevLine 
[3150]1#region License Information
2/* HeuristicLab
[3154]3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[3150]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using HeuristicLab.Core;
24using HeuristicLab.Data;
[3154]25using HeuristicLab.Encodings.RealVectorEncoding;
26using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
[3150]27
[3170]28namespace HeuristicLab.Problems.TestFunctions {
[3150]29  /// <summary>
[3315]30  /// The Schwefel function (sine root) is implemented as described in Affenzeller, M. and Wagner, S. 2005. Offspring Selection: A New Self-Adaptive Selection Scheme for Genetic Algorithms.  Ribeiro, B., Albrecht, R. F., Dobnikar, A., Pearson, D. W., and Steele, N. C. (eds.). Adaptive and Natural Computing Algorithms, pp. 218-221, Springer.
[3150]31  /// </summary>
[3781]32  [Item("SchwefelEvaluator", "Evaluates the Schwefel function (sine root) on a given point. In the given bounds [-500;500] the optimum of this function is close to 0 at (420.968746453712,420.968746453712,...,420.968746453712). It is implemented as described in Affenzeller, M. and Wagner, S. 2005. Offspring Selection: A New Self-Adaptive Selection Scheme for Genetic Algorithms.  Ribeiro, B., Albrecht, R. F., Dobnikar, A., Pearson, D. W., and Steele, N. C. (eds.). Adaptive and Natural Computing Algorithms, pp. 218-221, Springer.")]
[3154]33  [StorableClass]
[3170]34  public class SchwefelEvaluator : SingleObjectiveTestFunctionProblemEvaluator {
[3154]35    /// <summary>
[3318]36    /// Returns false as the Schwefel (sine root) function is a minimization problem.
[3154]37    /// </summary>
38    public override bool Maximization {
39      get { return false; }
[3150]40    }
[3154]41    /// <summary>
42    /// Gets the optimum function value (0).
43    /// </summary>
44    public override double BestKnownQuality {
45      get { return 0; }
46    }
47    /// <summary>
48    /// Gets the lower and upper bound of the function.
49    /// </summary>
50    public override DoubleMatrix Bounds {
51      get { return new DoubleMatrix(new double[,] { { -500, 500 } }); }
52    }
53    /// <summary>
54    /// Gets the minimum problem size (1).
55    /// </summary>
56    public override int MinimumProblemSize {
57      get { return 1; }
58    }
59    /// <summary>
60    /// Gets the (theoretical) maximum problem size (2^31 - 1).
61    /// </summary>
62    public override int MaximumProblemSize {
63      get { return int.MaxValue; }
64    }
[3150]65
[3781]66    public override RealVector GetBestKnownSolution(int dimension) {
67      return null;
68    }
69
[3150]70    /// <summary>
71    /// Evaluates the test function for a specific <paramref name="point"/>.
72    /// </summary>
73    /// <param name="point">N-dimensional point for which the test function should be evaluated.</param>
74    /// <returns>The result value of the Schwefel function at the given point.</returns>
[3154]75    public static double Apply(RealVector point) {
[3150]76      double result = 418.982887272433 * point.Length;
77      for (int i = 0; i < point.Length; i++)
78        result -= point[i] * Math.Sin(Math.Sqrt(Math.Abs(point[i])));
79      return (result);
80    }
81
82    /// <summary>
83    /// Evaluates the test function for a specific <paramref name="point"/>.
84    /// </summary>
85    /// <remarks>Calls <see cref="Apply"/>.</remarks>
86    /// <param name="point">N-dimensional point for which the test function should be evaluated.</param>
87    /// <returns>The result value of the Schwefel function at the given point.</returns>
[3154]88    protected override double EvaluateFunction(RealVector point) {
[3150]89      return Apply(point);
90    }
91  }
92}
Note: See TracBrowser for help on using the repository browser.