1 | #region License Information
|
---|
2 | /* HeuristicLab
|
---|
3 | * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
|
---|
4 | *
|
---|
5 | * This file is part of HeuristicLab.
|
---|
6 | *
|
---|
7 | * HeuristicLab is free software: you can redistribute it and/or modify
|
---|
8 | * it under the terms of the GNU General Public License as published by
|
---|
9 | * the Free Software Foundation, either version 3 of the License, or
|
---|
10 | * (at your option) any later version.
|
---|
11 | *
|
---|
12 | * HeuristicLab is distributed in the hope that it will be useful,
|
---|
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
15 | * GNU General Public License for more details.
|
---|
16 | *
|
---|
17 | * You should have received a copy of the GNU General Public License
|
---|
18 | * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
|
---|
19 | */
|
---|
20 | #endregion
|
---|
21 |
|
---|
22 | using System;
|
---|
23 | using HeuristicLab.Common;
|
---|
24 | using HeuristicLab.Core;
|
---|
25 | using HeuristicLab.Data;
|
---|
26 | using HeuristicLab.Encodings.RealVectorEncoding;
|
---|
27 | using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
|
---|
28 |
|
---|
29 | namespace HeuristicLab.Problems.TestFunctions {
|
---|
30 | /// <summary>
|
---|
31 | /// The Rosenbrock function features a flat valley in which the global optimum is located.
|
---|
32 | /// It is implemented as generalized Rosenbrock function as for example given in Shang, Y.-W. and Qiu, Y.-H. 2006. A Note on the Extended Rosenbrock Function. Evolutionary Computation 14, pp. 119-126, MIT Press.
|
---|
33 | /// </summary>
|
---|
34 | [Item("RosenbrockEvaluator", @"The Rosenbrock function features a flat valley in which the global optimum is located.
|
---|
35 | For 2 and 3 dimensions the single minimum of this function is 0 at (1,1,...,1), for 4 to 30 dimensions there is an additional local minimum close to (-1,1,...,1).
|
---|
36 | It is unknown how many local minima there are for dimensions greater than 30.
|
---|
37 | It is implemented as generalized Rosenbrock function for which the 2 dimensional function is a special case, as for example given in Shang, Y.-W. and Qiu, Y.-H. 2006. A Note on the Extended Rosenbrock Function. Evolutionary Computation 14, pp. 119-126, MIT Press.")]
|
---|
38 | [StorableClass]
|
---|
39 | public class RosenbrockEvaluator : SingleObjectiveTestFunctionProblemEvaluator {
|
---|
40 | /// <summary>
|
---|
41 | /// Returns false as the Rosenbrock function is a minimization problem.
|
---|
42 | /// </summary>
|
---|
43 | public override bool Maximization {
|
---|
44 | get { return false; }
|
---|
45 | }
|
---|
46 | /// <summary>
|
---|
47 | /// Gets the optimum function value (0).
|
---|
48 | /// </summary>
|
---|
49 | public override double BestKnownQuality {
|
---|
50 | get { return 0; }
|
---|
51 | }
|
---|
52 | /// <summary>
|
---|
53 | /// Gets the lower and upper bound of the function.
|
---|
54 | /// </summary>
|
---|
55 | public override DoubleMatrix Bounds {
|
---|
56 | get { return new DoubleMatrix(new double[,] { { -2.048, 2.048 } }); }
|
---|
57 | }
|
---|
58 | /// <summary>
|
---|
59 | /// Gets the minimum problem size (2).
|
---|
60 | /// </summary>
|
---|
61 | public override int MinimumProblemSize {
|
---|
62 | get { return 2; }
|
---|
63 | }
|
---|
64 | /// <summary>
|
---|
65 | /// Gets the (theoretical) maximum problem size (2^31 - 1).
|
---|
66 | /// </summary>
|
---|
67 | public override int MaximumProblemSize {
|
---|
68 | get { return int.MaxValue; }
|
---|
69 | }
|
---|
70 |
|
---|
71 | public override RealVector GetBestKnownSolution(int dimension) {
|
---|
72 | if (dimension < 2) throw new ArgumentException(Name + ": This function is not defined for 1 dimension.");
|
---|
73 | RealVector result = new RealVector(dimension);
|
---|
74 | for (int i = 0; i < dimension; i++) result[i] = 1;
|
---|
75 | return result;
|
---|
76 | }
|
---|
77 |
|
---|
78 | /// <summary>
|
---|
79 | /// Evaluates the test function for a specific <paramref name="point"/>.
|
---|
80 | /// </summary>
|
---|
81 | /// <param name="point">N-dimensional point for which the test function should be evaluated.</param>
|
---|
82 | /// <returns>The result value of the Rosenbrock function at the given point.</returns>
|
---|
83 | public static double Apply(RealVector point) {
|
---|
84 | double result = 0;
|
---|
85 | for (int i = 0; i < point.Length - 1; i++) {
|
---|
86 | result += 100 * (point[i] * point[i] - point[i + 1]) * (point[i] * point[i] - point[i + 1]);
|
---|
87 | result += (point[i] - 1) * (point[i] - 1);
|
---|
88 | }
|
---|
89 | return result;
|
---|
90 | }
|
---|
91 |
|
---|
92 | /// <summary>
|
---|
93 | /// Evaluates the test function for a specific <paramref name="point"/>.
|
---|
94 | /// </summary>
|
---|
95 | /// <remarks>Calls <see cref="Apply"/>.</remarks>
|
---|
96 | /// <param name="point">N-dimensional point for which the test function should be evaluated.</param>
|
---|
97 | /// <returns>The result value of the Rosenbrock function at the given point.</returns>
|
---|
98 | protected override double EvaluateFunction(RealVector point) {
|
---|
99 | return Apply(point);
|
---|
100 | }
|
---|
101 | }
|
---|
102 | }
|
---|