Free cookie consent management tool by TermsFeed Policy Generator

source: trunk/sources/HeuristicLab.Problems.TestFunctions/3.3/Evaluators/RastriginEvaluator.cs @ 4695

Last change on this file since 4695 was 4068, checked in by swagner, 14 years ago

Sorted usings and removed unused usings in entire solution (#1094)

File size: 5.0 KB
RevLine 
[3150]1#region License Information
2/* HeuristicLab
[3154]3 * Copyright (C) 2002-2010 Heuristic and Evolutionary Algorithms Laboratory (HEAL)
[3150]4 *
5 * This file is part of HeuristicLab.
6 *
7 * HeuristicLab is free software: you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation, either version 3 of the License, or
10 * (at your option) any later version.
11 *
12 * HeuristicLab is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with HeuristicLab. If not, see <http://www.gnu.org/licenses/>.
19 */
20#endregion
21
22using System;
23using HeuristicLab.Core;
24using HeuristicLab.Data;
[3154]25using HeuristicLab.Encodings.RealVectorEncoding;
[4068]26using HeuristicLab.Parameters;
[3154]27using HeuristicLab.Persistence.Default.CompositeSerializers.Storable;
[3150]28
[3170]29namespace HeuristicLab.Problems.TestFunctions {
[3150]30  /// <summary>
[3315]31  /// The generalized Rastrigin function y = Sum((x_i)^2 + A * (1 - Cos(2pi*x_i))) is a highly multimodal function that has its optimal value 0 at the origin.
32  /// It is implemented as described in Eiben, A.E. and Smith, J.E. 2003. Introduction to Evolutionary Computation. Natural Computing Series, Springer-Verlag Berlin Heidelberg.
[3154]33  /// </summary
[3315]34  [Item("RastriginEvaluator", "Evaluates the generalized Rastrigin function y = Sum((x_i)^2 + A * (1 - Cos(2pi*x_i))) on a given point. The optimum of this function is 0 at the origin. It is implemented as described in Eiben, A.E. and Smith, J.E. 2003. Introduction to Evolutionary Computation. Natural Computing Series, Springer-Verlag Berlin Heidelberg.")]
[3154]35  [StorableClass]
[3170]36  public class RastriginEvaluator : SingleObjectiveTestFunctionProblemEvaluator {
[3154]37    /// <summary>
38    /// Returns false as the Rastrigin function is a minimization problem.
39    /// </summary>
40    public override bool Maximization {
41      get { return false; }
[3150]42    }
[3154]43    /// <summary>
44    /// Gets the optimum function value (0).
45    /// </summary>
46    public override double BestKnownQuality {
47      get { return 0; }
48    }
49    /// <summary>
50    /// Gets the lower and upper bound of the function.
51    /// </summary>
52    public override DoubleMatrix Bounds {
53      get { return new DoubleMatrix(new double[,] { { -5.12, 5.12 } }); }
54    }
55    /// <summary>
56    /// Gets the minimum problem size (1).
57    /// </summary>
58    public override int MinimumProblemSize {
59      get { return 1; }
60    }
61    /// <summary>
62    /// Gets the (theoretical) maximum problem size (2^31 - 1).
63    /// </summary>
64    public override int MaximumProblemSize {
65      get { return int.MaxValue; }
66    }
[3315]67    /// <summary>
68    /// The parameter A is a parameter of the objective function y = Sum((x_i)^2 + A * (1 - Cos(2pi*x_i))). Default is A = 10.
69    /// </summary>
70    public ValueParameter<DoubleValue> AParameter {
71      get { return (ValueParameter<DoubleValue>)Parameters["A"]; }
72    }
73    /// <summary>
74    /// The parameter A is a parameter of the objective function y = Sum((x_i)^2 + A * (1 - Cos(2pi*x_i))). Default is A = 10.
75    /// </summary>
76    public DoubleValue A {
77      get { return AParameter.Value; }
78      set { if (value != null) AParameter.Value = value; }
79    }
[3150]80
[3781]81    public override RealVector GetBestKnownSolution(int dimension) {
82      return new RealVector(dimension);
83    }
84
[3150]85    /// <summary>
[3315]86    /// Initializes a new instance of the RastriginEvaluator with one parameter (<c>A</c>).
87    /// </summary>
88    public RastriginEvaluator()
89      : base() {
90      Parameters.Add(new ValueParameter<DoubleValue>("A", "The parameter A is a parameter of the objective function y = Sum((x_i)^2 + A * (1 - Cos(2pi*x_i))). Default is A = 10.", new DoubleValue(10)));
91    }
92
93    /// <summary>
[3150]94    /// Evaluates the test function for a specific <paramref name="point"/>.
95    /// </summary>
96    /// <param name="point">N-dimensional point for which the test function should be evaluated.</param>
97    /// <returns>The result value of the Rastrigin function at the given point.</returns>
[3315]98    public static double Apply(RealVector point, double a) {
99      double result = a * point.Length;
[3150]100      for (int i = 0; i < point.Length; i++) {
101        result += point[i] * point[i];
[3315]102        result -= a * Math.Cos(2 * Math.PI * point[i]);
[3150]103      }
104      return (result);
105    }
106
107    /// <summary>
108    /// Evaluates the test function for a specific <paramref name="point"/>.
109    /// </summary>
110    /// <remarks>Calls <see cref="Apply"/>.</remarks>
111    /// <param name="point">N-dimensional point for which the test function should be evaluated.</param>
112    /// <returns>The result value of the Rastrigin function at the given point.</returns>
[3154]113    protected override double EvaluateFunction(RealVector point) {
[3315]114      return Apply(point, A.Value);
[3150]115    }
116  }
117}
Note: See TracBrowser for help on using the repository browser.